
THE COMPUTER JOURNAL~
For Those Who Interface, Build, and Apply Micros

VOl II No.3 $2.50 US

Heuristic Search in Hi-QpOl,e2

Build a High-Resolution S-100
Graphics Board

Part Two: Theory of OperationpOlle12

Multi-user:
Etherseriespale 17

System Integration
Part Two: Disk Controllers and CP/M 2.2

System Generationpale21

New ProductspOl,e28

The Computerist's Calendar~,e2o

Editor's Page

The End of the "Programmer Prima Donna"
The computer software market is changing rapidly

now that more computers are being used in offices
and homes by non-computerists. Until recently most
of the microcomputers were used by people
interested in computers. These knowledgeable users
were willing to make do with awkward programs or
rewrite them, but the market is changing and has
now reached a point where programs will have to be
designed for the end user in order to be successful.

When microcomputers first became popular. only
programmers knew enough about these marvelous
new devices to foresee what they could do. These
pioneering individuals wrote business programs. and
we were amazed at the power available in word
processors. data bases. and other useful programs.
These early business programs were the primary
reason for the rapid expansion of micro sales.

Unfortunately. the programmers (who were the
only ones to understand the micro) did not
understand the requirements of a business system.
The result was that hundreds of programs were
developed which were difficult to use. and which
almost did the job. The programmers worked in
isolation and produced elaborate programs which sold
because they were so much better than working
without a computer.

The programmers were "high priests" who decided
what the customers should use. and the customers
did not have enough experience with computers to
intelligently evaluate the offerings. The programmers
also lost sight of who their users were. and were not
really interested in understanding their needs. The
software industry talks about alpha and beta testing
of programs. but this testing was (and perhaps still is)
done by experienced computerists. The testing should
really be done by the lowest level of people expected
to use the program. If you are selling a program
which will be purchased and used by other
programmers it should be tested by programmers. If
the program will be used by people on the street. it
should be tested by people on the street. It took a
long time for other industries to realize that they had
to identify their market. really visualize the
individuals expected to lay their cash on the counter
and put the product to use. and then spend enough

time in the users' environment to understand what
they did in a typical work day. If you want to test a
program for real estate offices. you should load the
program and a computer into your car, and drive
around until you find an office whose personnel
represent the least knowledgeable segment of your
market. Offer them whatever cash it takes to have
them try your program using the computer you
supply, give them the documentation. and then sit in
the corner and watch what happens. If they have to
ask you a question. or you have to point out
something they are doing wrong. the experiment has
failed and you had better go back and make revisions.
You may also find that while the program is easy to
understand and put to use. it just may not perform
the required functions.

The problem of non-performing software became
very evident to us while we were searching for a data
base for use on our new CP/M machine. We had been
using The General Manager by Sierra On-Line on our
Apple~ • and were quite satisfied with it. but we are
changing to a S-100 system and need a simple data
base. So far the offerings we have seen for CP/M are
expensive, hard to use. and are incapable of handling
our mail list needs. We also reviewed some mail list
programs. but they failed to handle our needs for 3rd

continued o~ page 25

Editor/Publisher Art Carlson
A rt Director Joan Thompson
Technical Editor Lance Rose
Technical Editor Phil Wells
Production Assistant Judie Overbeek
Contributing Editor Ernie Brooner

The Computer Journal'!> is published 12 times
a year. Annual subscription is S24 in the US.,
S30 in Canada, and 139 in other countries.

Entire contents copyright © 198.1, by The
Computer JournaL

Postmaster: Send address changes to: The
Computer Journa~ P.O. Box 1697, Kalispel~ MT
59903-1697.

Address all editoria~ advertising and
subscription inquires to: The Computer Journa~

P.O. Box 1697, Kalispel~ MT 59903·1697.

2 The Computer Jourr:a,

HEURISTIC SEARCH IN HI-Q , o.

by Henry W. Davis
Computer Science Department

Wright State University, Dayton, Ohio

Figure 2: A typical initial state for hi·Q IS shown In Figure 2a Any
square could be left empty, but In thiS case It'S square number 6
(using the numbering scheme of Figure 1). Figures 2b, 2c, and
2d show the results of typical first, second and third moves For
example, in the third move, the peg at 1 jumps the peg at 6 and
lands In location 12.

,,"

,,~

,J

't

,ill

,,11

·It

,1lf

i'

••

d

game was initialized by
arbitrarily choosing
hole 6 to be empty. The
game is easily played
and studied by simply
drawing a big version
of Figure 1 (without
the numbers l and using
pennies instead of pegs.
In fact, for this reason
it is sometimes called
the "20-penny puzzle."

The version just
described will stump
most people for quite
a while. Try it! For the
very ambitious there
are harder versions
coming up.

cba

1 2 3

4 5 6 7 8

9 10 11 12 13

14 15 16 17 18

19 20 21

Figure 1: HI-Q is played on a board
With POSitions patterned as shown
above In the center of each num·
bered square IS a hole for a Single
peg. Initially 20 pegs are placed
randomly into the holes The pegs
may Jump one another hOrIZontally.
vertically or diagonally as long as
they land In a vacant location
Jumped pegs are removed from the
board and the goal is to remove all
but one peg

The Basic
Algorithm

The basic hi-Q search
algorithm is a variation of Nils Nilsson's "ordered search
algorithm" which may be found in Chapter 3 of his 1971
book Problem solving Methods in Artificial Intelligence. This
is also the "graphsearch procedure in Chapter 2 of his 1981
book Principles of Artificial Intelligence. It is shown in
Figure 4 and explained below.

The many possible configurations of the hi-Q board are
called states. The states are connected by arrows, or
directed arcs, which represent legal moves transforming one
state into another. The result is a directed graph, called the
state space. Figure 3 shows a very small portion of the state
space for the hi·Q puzzle whose initial state is Figure 2a.

Computer games challenge humans to be smart. Have
you ever wanted to reverse the role? This article is about
how to write a program which makes the computer appear
as smart as a human, or smarter! It also demonstrates a
technique called "heuristic search," an important component
in many artificial intelligence systems.

Our medium is "hi-Q," a popular puzzle played in a certain
chain of restaurants by customers who are waiting for their
food. When I first encountered hi·Q, I was so intrigued that I
decided to share it with my students in an artificial
intelligence course at Wright State University. The course
includes heuristic search algorithms. On two occasions, I
asked students to try these algorithms on hi-Q. They used a
wide variety of languages and computers, from BASIC,
FORTRAN, and PASCAL on home computers to
SIMSCRIPT on a CYBER. They obtained a number of
fascinating results showing that heuristic programs can do
quite well at hi-Q, considerably better than most humans.

In this article, I will describe the basic algorithm used
along with specifics of the hi·Q environment. Then I would
like to share with you some aspects of a particularly nice
program written by Ed Dudzinski, a former masters degree
student in computer science at Wright State. Ed currently
works on software optimization for array processors at the
Wright-Patterson Air Force Base in Dayton, Ohio. His
program, written in FORTRAN, is interesting because it
performs well while demanding little memory - less than
40,000 bytes in a home computing environment.
Nevertheless it has analyzed game situations involving as
many as 190,000 different board configurations.

Our results are only a beginning. It is still not clear what
the best computer hi·Q strategy is, even for the simplest hi
Q version described below.

The Rules of Hi·Q
A common version of hi-Q has 21 holes drilled into a piece

of wood. Figure 1 shows the pattern: there is assumed to be
one hole in the center of each of the numbered squares. The
puzzle begins with pegs in 20 of the holes. The goal is to
"jump and remove" 19 of these pegs, ending with only one
peg on the board. The rules are as follows:
1) A peg can be moved only by jumping and thereby
removing a single adjacent peg.
2) A peg can jump either horizontally (eg., from hole 5 to
hole 7), vertically (eg., hole 17 to 7), or diagonally (eg., hole 7
to hole 15).
3) The jump can be made only if the destination is empty
(eg., hole 7 in a 5-to-7 jump) and the jumped hole (hole 6) is
full; the jumped peg is removed.
Figure 2 shows the first three moves of a typical game. This

Figure 3: A very small portion of the "state space" of a hi-Q
puzzle is shown. The different board configurations are called
states, or nodes Arrows indicate legal moves from one state to
another. The whole construct of states and legal moves forms a
directed graph, called the stale space.

:~
o a a a a
coo 0,

C' 0 0 0 I

~

r--
a c a

10 0 a a 0

1 0 0 0 0 I
I 0 a 0 0

~

~

o 0 0

ro 0 0 i
10 0 0 C o!
~OOOOI

o 0 a

~

'00000'

o 0 0 0 1

o 0 a 0 !

~

The Computer JOJma, 5

Compute f (START), store rt wrth START. and insert START Into Oper,
CURRENT~NULL: FOUND~'FALSE'

DO UNTIL OPEN IS empty or FOUND = 'TRUE'
CURRENT(;- node on OPEN with least f value

(resolve ties lexically)
Insert CURRENT Into CLOSED and delete it from OPEN
Generate all successors to CURRENT
IF some successor is a goal THEN

[
Report solution (using search tree)
FOUND~'TRUE'

ELSE
For each successor M of CURRENT DO

[

f M is not on OPEN or CLOSED THEN
Compute f(M) and store It With M

[

,rect a "parent pOinter" from M to CURRENT
(for search tree)

Insert M into Open

IF FOUND= 'FALSE' THEN report failure.

Figure 4: The basic hi-Q search algOrithm starts by putting the
initial puzzle configuration on the OPEN list. In the main iteration a
node is removed from OPEN and its successors are generated by
applying all legal moves. If a goal (only one peg left) is not found.
then those successors not previously seen are added to OPEN If a
goal is found, then search tree pointers enable the program to
report the route it discovered.

The algorithm "knows" the legal moves and takes as input
an initial state. It performs all legal moves on the initial
state. generating new states. The legal moves are then
performed on some or all of these new states obtaining still
more states, etc. Intuitively, this process has the program
"wandering around the state space" looking for a goal
state - much like a rat in a maze. Obviously if this is to
work, the program needs some bookkeeping devices to keep
track of where it has been, how it got there, and where it
might still go. It also needs a decision mechanism to
determine where to go next. The key ingredients for doing
this are the open list. the closed list. the search tree, and
the evaluation function. each described below.
1) OPEN is a list of states. or nodes. in the state space
which the program knows about but to which the legal
moves have not yet been applied. Initially the beginning
puzzle configuration is placed on OPEN. In a typical cycle of
the search procedure a node is removed from OPEN and all
legal moves are applied to it obtaining a set of successor
nodes. One says that the node removed from OPEN was
expanded and that the successor nodes were generated from
it.
2) CLOSED is a list of nodes which have been removed from
OPEN and expanded. Why bother to remember a node we
have already expanded and hence seem to be through with?
The reason is so that whenever we generate a new node we
can tell whether or not it has been previously generated.
Namely, we compare the new node with the entries on
OPEN and CLOSED. If we find a copy of it there. then we
will behave differently than we would had the node not been

previously discovered.
3) When a new node is generated, the program will place in
its record of the node a pointer to the node's parent. The
resulting structure of nodes and pointers forms a tree, called
the search tree. The initial problem state is the tree's root.
The sole purpose of the search tree is to enable the program
to find its way back to the start once it has found the goal.
By following the parent pointers back to the root. a listing of
the legal moves from start to goal is obtained.
4) We come now to the crucial question: In what pattern
shall the program "move through the state space?" This is
equivalent to asking "in what order shall it expand the
nodes which are on OPEN?" This decision is made by an
evaluation function. f. When f is evaluated on a puzzle state
it returns a real number: the smaller that number is. the
more likely it is felt that the given state is close to a goal
state. The search program expands that node on OPEN
whose f value is lowest. Most of the apparent "smartness" of
our program is due to f. Without a good evaluation function,
all is lost.

Let us examine the algorithm of Figure 4 more closely. In
the outside iteration, the program removes from OPEN the
"most promising node" (lowest f value), puts this node on
CLOSED and then expands it. obtaining all legal successors.
If there is no solution, then those nodes not seen before are
placed on OPEN. and another iteration is made. CURRENT
is a location which references the node now being expanded.
If several nodes on OPEN are tied with the lowest f value.
then the "lexically" lowest is chosen. This simply means that
the program views the board description as a string of

'.
4 The Computer Journal ..

Figure 5: The state space for a fictitious puzzle is shown In Figure
5a. Figures 5b, 5c, and 5d show the search tree and solution
(darkened path) found by three evaluation functions In 5b, f
rewards being close to START, yielding a breadth first search In 5c,
f rewards being far away from START, yielding a depth first search
In 5d, the f of 5b has added to it a heuristic component which
punishes nodes for being circular, less for being triangular and not
at all for being square. The numbers beside each node are the f
values (see article for computation details). It IS assumed that ties
are broken lexically (eg , in figure 5b node a is expanded before
node b)

,,!il

,j,j

'Ill

,oli

",.

i,'~

,<it

"111

,<it

'Ill

,.",

,""

example. The darkened path shows the particular solution
which is discovered. The numbers beside each node give its f
value. As the algorithm iterates, the search tree is built up
level-by-level, left-to-right. A completed level in the search
tree corresponds to having investigated all nodes within a
fixed distance of START in the state space. Due to this
systematic expansion from START in all directions, the
algorithm is called "breadth first." It is an example of a
"blind search" because no heuristics are used.

Another type of blind search is called "depth first"
because it always favors expanding those nodes which are
furthest away from START. To achieve it in the puzzle of

Fi~ul'~ 5A, set flgTARTl = 0; whenever a node Q is
generated from a node P, we set f(Q) = f(P) - 1. The resulting
search tree and solution obtained is shown in Figure 5c. A
deeper and more costly goal is found than in the breadth
first case; however. fewer nodes are generated. For hi-Q it is
very important to go deep quickly. More about this shortly.

Now suppose we would like to have a more-or-Iess breadth
first search tempered by some heuristic information. For
example, suppose a hunch tells us that whenever the
program generates a square node (eg., like d or f in Figure
Sa) then it is probably close to a solution and it should keep
moving in that direction. A triangular node Oike j in Figure
Sa) is similar but not as good. Then we might define the
"heuristic function" h by:

h(N) = 0 if N is square
h(N) = 1 if N is triangular
h(N) = 4 if N is round

The heuristic function punishes nodes for being round or
triangular, but the latter less. Define f = g + h. The effect of
g is to "add breadth to the search." If the program gets
carried away following square and triangular nodes deeply
into the state space, then sooner or later g will grow and
force it back to shallower nodes which it ignored earlier. In
Figure 5d this f is applied to the puzzle of Figure Sa. It
happens to work very well: the least cost goal is found while
fewer nodes are generated or expanded than with the other
evaluation functions. Setting f = h and dropping the gout
works just as well in this case. In general, however.
conventional wisdom suggests leaving the g component in
for the reasons mentioned above: h might sometimes lead
one astray and g helps cover for that event. (It's easy to
alter Figure Sa so that this happens,)

\0

\e
·5

characters and chooses the smallest string relative to
normal sorting of character strings. Alternatively. such ties
could be broken "arbitrarily." But it turns out that the
success of many evaluation functions on a particular initial
puzzle varies tremendously (sometimes by a factor of 10001
with how such ties are broken. Rather than leaving the tie
breaking up to an accident of coding, we choose to make it
an explicit part of the algorithm. For one thing. our results
are more easily duplicated by others. We return to this
problem later because it raises the question of how we can
properly judge the effectiveness of an evaluation function.

Evaluation Functions:
The Main Source of Intelligence

It is important to understand how different evaluation
functions can alter the search pattern. Figure 5 illustrates
this. In Figure 5a the state space for a fictitious puzzle is
shown. Some of the states are shaped as circles and others
as triangles or squares. Each state is given a name (eg.•
S.a,b. or G21 and there are two goal states. For each node N
in Figure Sa let g(Nl be the least distance from S to N that
the program has seen at a given instance. where we assign
to each directed arc a distance of 1. One common practice is
to set f(Nl - g(Nl. Figure 5b shows the search tree that
results when the algorithm of Figure 4 is run on this

The Hi-Q Landscape
Since the state space for hi-Q is finite, even a blind search.

like breadth first. will eventually find a goal. The solution it
reports will require only 19 moves because all solutions
require exactly 19 moves. On what basis, then, can we say
that one computer search heuristic is better than another?
There are several criteria which students in my classes have
used:
.1 The number of nodes generated: An algorithm which
consistently generated fewer nodes then others would seem
to be working less hard.
bl The number of nodes expanded: When a node is
expanded the algorithm is saying, "I think the goal is in this

,M

,M

[

COO:"""",

o 0 0 I
00000 1

1

o 0 0 0 ~

~

Figure 6: The eight initial configurations shown are symmetric

duplicates" of each other. The puzzles on each row may be
obtained by successive rotations of 90 degrees. The puzzles In
row 2 may be ob alned from the ones above them via a dlagona'
reflectIOn Puzzles with more than one peg missing can also ~e

50s Treating 50's "equally" requires caretul coding

Ed ran the program on all 21 initial configurations using
each of the five evaluation functions. Table 1 gives a
summary of his results. The five algorithms are compared
with respect to average number of nodes generated, average
number of nodes expanded, and average CPU time required.
To measure the consistency, or stability, of the algorithms,
the standard deviation is also given. Table 2 gives the actual
results for each algorithm and each possible start state. Ed
evaluates the situation as follows:

The exhaustive depth·first search algorithm with
lexical discrimination gives surprisingly good results,

where d is the depth component discussed above (number of
pegs on board) and h is a heuristic function. All searches are
depth first. This is achieved by requiring that each h be less
than one in absolute value and never change sign. Thus the
dominant rule in choosing nodes from OPEN is "take the
deepest;" only if there are depth ties is h relevant. Further
ties are resolved lexically. The five heuristic functions
compared are as follows:

1) Blind depth search; h is zero. This gives a basis for
comparison of the other heuristic functions.
2) Avoid filled corners; h is (number of filled cornersl!10.
The corner holes are numbered 1, 4, 14, 19, 21, 18, 8, and 3 in
Figure 1. This heuristic punishes states with filled corners.
The 1/10 factor keeps h less than unity assuring a depth first
search.
3) Favor a filled center; h is - (number of filled holes)!10.
Nodes are rewarded to the extent that their nine
centermost holes are filled.
4) Favor filled pivotal spots; h is - {number of filled pivotal
spots)/5. In Figure 1 locations 6. 10, 16, and 12 are called
pivotal because more jumps can be made from and over
them than any other hole.
5} Favor a high degree of freedom; h is - (number of
possible next moves)/30. This heuristic says to move in such
a way as to keep the number of options at a maximum. The
maximum number of successors a node can have is about 18.

Heuristics and Results
Five search techniques are compared in Ed Dudzinski's

program. All use evaluation functions of the form f = d + h,

direction." If only 19 nodes are expanded, then the program
went directly to the solution. I've never seen a human do
that. An algorithm which consistantly scores in the low
twenties in this area would have to be considered good.
c:I CPU time: A low value is good while a high value offsets
good performance in the first two areas.
dl Consistency: A good algorithm performs well for all
initial states.

As we noted earlier, the performance of an evaluation
function varies tremendously on a given initial puzzle when
the f ties on OPEN are broken differently. A related
phenomenen is that the same algorithm will often get wildly
different answers when working on "symmetric duplicates."
One configuration is a symmetric duplicate {SDl of another if
it may be mapped into the other by a combination of 90°
rotations and reflections on the diagonals. The initial
configurations of Figure 6 are all SDs. In row two of Figure
3, states three and four are SDs. My students and I were
initially surprised to see the same algorithm generate 100
nodes to solve one puzzle and then 100,000 nodes to solve
one of its SDs. This will happen even if ties are broken
lexically. The reason is very simple: most people code their
programs so that symmetric holes are assigned different
numbers and these numbers affect the order in which
successors are generated. Thus the successors of two SDs
will usually be put on OPEN in a different order. The effect
is that ties are broken differently when the program works
on two unequal SDs. Lexical breaking of ties does not help
because the fact that one state is lexically smaller than
another is no guarantee that an SD of the one state will be
lexically smaller than an SD of the other.

There are several possible approaches to this problem.
One is to collect statistics in categories (a), (b), (c), and (d),
above, for all 21 initial puzzle configurations. This method
was used to evaluate the Dudzinski program described
below. A very elegant approach was taken by Joel W.
Arnold: the order in which successors to a node are
generated depends only on the class of SDs to which the
node belongs and not on which particular SD it is. SD nodes
generate SD successors in a corresponding order. His
program behaves identically with respect to (a), (b), and (c)

when input states are SDs. (Arnold's SDs are relative to
rotation, but not to reflection,)

It is common to include a breadth component g (discussed
above) in the evaluation function of puzzles. My students
have universally found that in hi-Q this is harmful. On the
contrary, a depth component is required. Without this, the
search tree becomes too wide and programs run out of
memory, or time. The evaluation functions we use have the
form f = d + h, where h is the heuristic component and d
forces depth, much the same way that h forces breadth. In
hi-Q a natural form for d is dIN) = number of pegs left in the
configuration N.

''II

fi Tnt' Compu~er Journal

'It

'III

"

,...

,"

'1

,III

'.

."

written in CDC extended FORTRAN and run on the

CYBER 750. The CYBER is a big machine but the program

requires very little memory. For example. it allows space

for only three hundred nodes to exist at a single time.
Because of judicious space management. this has proven
adequate for solving puzzles which generate over 189.000
nodes. The program has 220 executable FORTRAN
statements and uses 9000 storage locations for arrays. In
the CYBER the total lead module was 15.249 60-bit words.

Upon converting this to a home computing environment. I

estimate 39,000 bytes as a generous upper bound on space
needs. This will be considerably reduced if the hi-Q board is

represented more efficiently.

The terminology of the program is in terms of pennies
instead of pegs. Each node has six fields:
al 5 x 5 matrix to hold the board configuration (l = penny.
0= open. 9 = corner!.
b) Open pointer.
c) Parent pointer.
d) Closed pointer.
e) F value. where F is the evaluation function.

f) Number of pennies on the board.
"Pointer" means the node number of another node. Three

hundred nodes are created at load time via six arrays
corresponding to each of af, above. The FORTRAN
declaration creates BOARD (5,5,300). OPENL(300).
PARENTL(300), CLOSEDL(300). F(300). and NR
PENNY(300). Any particular node "straddles" these arrays.
For example. node 23 has its F value stored in F(23l, the
number of pennies on its board in NR PENNY(23) and the
actual board configuration stored in the locations associated
with BOARD(, .23), If node 18 generates node 23. then the
value in P ARENTL(23) is 18.

OPEN and CLOSED are maintained
as linked lists; i.e., as nodes chained
together via the pointer values in
fields band d. above. Removing a
node from OPEN and putting it on
CLOSED means simply changing a
few values in fields band d. The
nodes in OPEN are kept sorted on F
value. and lexically where F values
are tied. Thus the main routine
always chooses the first node on
OPEN for expansion.

To save time. puzzles with more
than seven pennies removed are not
checked for duplicates on OPEN or
CLOSED. This is the only deviation
from the algorithm of Figure 4. The
program checks for symmetric as
well as perfect duplicates for the
first three moves and perfect
duplicates for the next four.

To conserve memory. the following
management device is used. Suppose
the previous node expanded has five
pennies on the board and the current

Number of nodes Number of nodes CPU time
generated expanded (sec)

standard standard standard I
average deviation average deViation average deViation I

372.4 4898 280.9 4980 .240 188 I
95062 402048 93847 40208 7 3893 16.068 I

I
205.4 170.5 95.6 1767 .174 073

160.4 168.3 935 164 4 155 061

2145 44.1 262 239 310 147
I

but this seems somewhat accidental. As algorithm 2
shows, and as other runs not included here have borne
out. there are dead end branches that can easily trap
an uninformed depth-first search into generating many
thousands of nodes.

Results for algorithm 2 (avoid filled corners) are
deceptive in the average. For all but three cases. this
approach gives very good results with a small
investment in CPU time. Unfortunately, one run
caused the expansion of almost 190.000 nodes. greatly
swelling the mean figures. Hence. stability was poor. to
say the least.

The last three algorithms show more stability.
Approach 3. favoring pegs in center holes, significantly
improve~ on ellhAu~tive depth·first search in all
categories. Algorithm 4 (pivotal holes) improves on
algorithm 3.

By far the most stable was the 5th algorithm (degree
of freedom), Obviously. this approach will result in the
generation of a lot of nodes. since it chooses the path of
most successors: the average number of nodes
generated by this approach exceeds the values for
algorithms 3 and 4. However. the performance of
algorithm 5 in terms of nodes expanded. or actual
moves, is remarkable. Six times. out of the 21 starting
configurations, the solution is found in the minimum 19
moves! In fact. for only two of the starting states does
the program exceed 22 moves. The price for this
facility of decision is paid in CPU time. Calculations of
the number of possible next moves is considerably
more time-consuming than methods used by the other
algorithms.

The ideal heuristic function. if it exists. will combine
the predictive power of algorithm 5 with the speed and
simplicity of algorithm 4.

2. AVOid
Corners

5. Maximize
Freedom

1 Blind

4. Favor
Pivotal
Holes

3 Favor
Center
Holes

Table 1: Five search algorithms are compared on all 21 initial hi-Q states The first is a blind
depth first search to give some basis of comparison for the others. The others are informed
depth first searches. The average performance with respect to nodes generated. nodes
expanded, and CPU time is given. In each case the standard deviation is given to measure the
consistency of the algorithm. Algorithm 5 performs best in terms of number of nodes
expanded and is very consistent. Unfortunately its CPU time is high.

The DudzUDSki Program
Many people who write successful hi-Q search programs

do so on home computers. The Dudzinski program was

one has eight. Since the search is depth first, the only way
this could happen is for the previous node to have been a
dead-end, i.e., no successors. The program is effectively
backing up to a node three levels higher. There are no
nodes on OPEN with five, six. or seven pennies. Therefore
we can "free" the previous node and three generations
of its ancestors without danger of eliminating a node
involved in an eventual solution. As long as such freedom
candidates are below the first seven levels, they are
removed from CLOSED and placed back on a list of
available nodes. This is how Dudzinski's program is able to
solve puzzles requiring the generation of 189,000 nodes
while there is only space for three hundred at a time.

Figure 7 shows the subprogram structure. The main
routine (listing 1) first initializes the board and various lists
by calling INIT. INIT reads the input puzzle and puts the
first node on OPEN (see listing 2), PENNY loops through
the open list calling PRUNE if the current node has no
fewer pennies than the previous one (indicating a dead-end),
Nodes are removed from OPEN, then placed on CLOSED if
they are no more than seven deep. MOVE is called to
generate successor nodes, check for a solution and insert
some or all of the successors onto OPEN.

GETNODE and FREE Wsting 3) manage the list of
available nodes. This list is chained together via the "open
pointer field" mentioned earlier. GETNODE provides the
caller with the node number of an available node and

Tne Compute. Journa: 7

removes that node from the available list. FREE returns a
node to the available list.

EVAL is passed a pointer to a newly created node and
returns its F value. The five evaluation functions used are
shown in listing 4. PRUNE Wsting 5) replenishes the list of
available nodes whenever a dead-end is encountered. This

PENNY

I I I
INIT PRUNE MOVE

I
I

I I I
GETNODE EVAL FREE CREATE

i I I
GET NODE SOLVE SEARCH

I I I I
DUPE FREE EVAL FILE

I
LEXCOMP

: Figure 7: The calling structure of subroutines In the Dudzinski
! program is shown PENNY initializes the board (via INIT) then

removes nodes from OPEN. plaCing them on CLOSED as appropriate.
MOVE is called periodically to generate successors. check for a
Solution and insert appropriate nodes onto OPEN. PRUNE frees
nodes when dead-ends are encountered. EVAL evaluates 1. The
other module functions are described in the article

1. Blind lurch 2. Avoid cornlrl 3. FlVor Clnilr 4. Flvor pivot. 5. Flvor ifllClom
Initial nodes nodes CPU nodes nodes CPU nodes nodes CPU nodes nodes CPU nodes nodes CPU
Open gen. expo time gen. exp time gen. exp time gen. exp time gen exp time
Hole

1 558 468 321 147 28 150 232 129 192 109 27 128 215 20 .279
2 130 42 139 171 34 160 154 52 157 250 179 172 213 22 288
3 135 39 .145 143 22 .140 456 385 282 110 33 .132 215 20 287
4 125 21 .141 152 32 161 155 19 154 224 154 185 215 20 .277
5 1182 1098 .547 189.257 189,153 75.718 107 22 .124 247 168 .199 201 34 322
6 148 60 .154 877 780 .441 165 27 160 86 20 .141 214 19 279
7 125 21 .146 162 22 163 108 22 .122 79 20 135 185 22 249
8 1182 1098 542 173 33 164 170 22 166 80 19 .126 196 21 263
9 143 60 148 112 19 .137 107 19 .127 146 73 136 214 19 .284

10 245 149 .196 119 23 .149 119 28 137 84 20 .136 211 22 323
11 154 63 .153 153 29 139 184 30 .156 82 20 .122 199 19 .256
12 161 58 .157 3.407 3.277 1496 157 19 .156 78 20 128 174 19 .243
13 117 19 .139 136 22 137 109 19 129 184 104 .154 405 132 .961
14 151 63 .151 150 29 .150 181 30 .154 79 20 132 215 20 278
15 557 468 .310 217 91 170 124 28 139 114 52 130 188 22 260
16 161 58 .172 3,407 3,277 1.508 157 19 .161 77 20 .126 202 19 .275
17 118 19 .137 137 22 .133 110 19 132 243 174 .179 207 20 283
18 131 32 149 184 31 .171 180 109 167 80 19 .131 215 20 .271
19 132 62 148 131 20 .150 147 19 .145 79 19 .128 196 21 271
20 2042 1981 .884 134 19 .131 881 786 459 860 782 .411 210 19 .272
21 124 19 .159 261 115 .189 311 205 .227 77 20 .124 215 20 282

max 2042 1981 .884 189,257 189.153 75718 881 786 459 860 782 411 405 132 961
Min 117 19 137 112 19 131 107 19 122 77 19 122 174 19 243
Average 3724 280.9 240 9,5062 9,384 7 3893 205.4 956 .174 160.4 935 155 2145 262 .310
st. dev 489.8 498.0 .188 40,2048 40,208 7 16068 1705 176.7 .073 1683 1644 061 44.1 239 147

lIbl, 2: This shows the performance of all five algorithms on all 21 initial states with respect to number of nodes generated, nocles expanded
and CPU time. Minimum, maximum, average and standard deviation figures are also given. The hole numbvrs in column 1 refer to Figure 1.
We see. for example, that algorithm 5 u5ually scores in the low 20's for nocles expanded. going almost directly to the solution Algorithm 2
expanded 189,153 nodlJs for initial state 5 but only 22 for its symmetric duplicate. state 17.

8 The Computer Journa·

."

"III

,.

• iii

,'.

''II

,III

,"

'II

'/II

ONE NODE OF THE GAME SEARCH TR.EE
- THE 5 X 5 PLAYING BOARD (CORNERS ARE UNUSED)
- :...INKS NODES ON '!'HE OPEH LIST, W'liICb CON"fAINS ALL

UNCHECKED GAME STATES; THIS POINTEF IS ALSO
USEr, TO LIB THE LIST OF AVAILABLE NOC'ES

- LIHI(S A. lK>OE TO ITS P1Jl£.HT, WHICH IS A BOARe
COIJPIGURATION ONE MOVE PREVIOUS TO ITSELF
LINKS NODES ON THE: CLOSEC LIST FOR DUPLICATE
CHECJl:ING; THE BOARD COIlFIGURATIONS IN THE '.::"LOS£['
LIST HAVE ALREADY BEEN EXPAJlDED

- THIS:S THE VALUE or THE EVA.LUATIOH FUNCTIo.- WHICH
A'M'D4P'rS TO PREDICT THE PROBABILITY Of A SOLlrTIOH
I Ill' A NOD!' S SUCCESSORS

- THE HUMBER OF PENNIES RDtAIIHIlfG Oh THE BOARD
- HEADS OF THE THREE LISTS OF NODES
- HEAD OF THE LIS'!' OF AVAIlABLE IIOOES
- HEAl' OF 'I1fE LI ST or OPD NODES
- HEAD OF THE LIST OF CLOSED HODES
- COUWTERS USED TO TRACK THE EPFECTI VEIfESS oP THE

PROGRAM H!:URISTICS AD MEC8AJIICS
THE NUMBER OP ItODES GElfERA'TEO

- 'M-IE NUMBER Of NODES UPAJrWEO
- THI: MAXIIl'lUM N1JMBER or NODE DATA A.RE.AS IN CSt AT

AllY TIME

PARNI'L

CLOSDL

PASSI

HPENN1'
CC»IJLol0N LISTS
H'"-'-D
OPH!:Af'
CLHP.Af'
C<»9ION CTRS

IIRGEN
NREXP
MAJ(HOD

HLDPTR

:::;LOBA.L V.-.R I '-'BLFS:
COMMON NODE
BOARt
OPENl

LOCAL VARIABLES:
CURRN'f - POINTER TO THE NODE BEING EXAM I Nl':(,'1 FOR POSSIBl.!:

!.X PAHS I 011
- POINTER O'I' THE NODE EXPAIJOED PREVIOUS 1'0 THE

CURREIn' NOD!!:
- LOGICAl. SWI'!'CH TO SKIP PRUNING TEST ON FIRST PASS

PROCkA.!'! PENNY
C THE !"\AIN ROUTINE INITIALIZES VA.RIABLES AIm LOOPS 'rlIROLJGH
C THE OPEN Ll ST, WHICH IS ORDEREO BY P-VALUE, SUBROUTI NE
C MOVE IS CALLED TO GENERATE. SUCCESSORS TO THE CURR!:N1' WO(~t:

C
c
('

C
C
C
c
C
c
C
C

C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

INTEGER BOAllD, OPEIlL. PARN"rL, CLOSOL, NPEIflrfY, HUD
• ,OPHUtD. CLHEAD. NRGEN, NRUP, MA.JC»OD

RlW. P
INTEGER CURJUrr, HLDPTR
LOGICAL PASSI
C<MK>N/NODF./BOA.RD(5,5. 3M) ,OPEHL(3.8). PAllHTL(388),

• CLOSOL(J8f1).P(J"8).N~HVY(J.e}

COI9ID'MI LI STS/HEAD, OP'BP.A.D. Cl...Kv.D
Cc»UK>N. CTRS/NRG£N. NREXP. AAXNOO
DATA PASS 1 / . TRUE. 1
CALL INIT
HL.DPTR~PHEAO

Ie., IPlOPHEAD.EO.8> GO TO ..,
CUR.JUn'~PHl'.AD

OPHEAD-OPEHL (CUUJr!')
IPlPASSl) GO TO 2M

C IP THE Sf.AJlCH IS NO LOfIGER GOIIIC I)(]WIII IWf'O THE STATE SPACE,
C THEH WE HAVE V--,CHED A DEADEJW (ALL ALOOItlTa.S ARE VA.JiIlATIOliiS

C or Df::PT1f-FIRST) AIID NOOIES WITH FEWER T1IAlt 1J PlEIBIl£S "Jill':
C "UWJ:D FROM THE SUJtCH TRE. TO rUE STORAGE.

IPlMPEJnI'YtCUIJQn') .GE. NPEHNY("LDPTA I)
• CALL PRUD (HLDPrR. IlPENNY (CUJUUn'))

C SIller: OWLY BOARDS GEJRRAT!D BY '!'HE fI RST 7 MOVES A.JlE CHEcur
C POR DUPLICATES, NODES LOfER IN THE STATE SPACE ARE ItO"!' SA\'"!O
C 011 TIl!: CLOSED Ll ST·

2•• IPt.PbIlI'Y(CURRNTI.LT.l) GO T'O see
CLO&DL (CUIlJUIT)-eLHEAD
CUlL\D<U1WtI'

S.. CALL MOVE (CL;RJtHT)
HLDPTa<UUJrr
PASS1- • FALSE.
GO TO IN

Me STOP 1
aD

EdItor's Sott'_ Tlaf fo{fuul7lg program l1Stlng_~ 1"1 F(JRTRAS aT(sllqh.~ m"'-('lr'Ht.in,,

t!t()H supplt!'d btl thf aurhor A .fell.' changes Ufrf nEosary In oTd~" II.' ;it "''":JI(l:';!i~

u'lth plmn l'untLla FORTRAS TIt€1£ ch.anges tnf'Olltd ~ubstltll.tlng sl.r,,·ha"o,/p IfJl(Q.f,!.

n.amt.~ lOT SfltTtf that uen seven characlf·rs long, Tem'jI171g &flrnt eItl:'f"IJfd a.:dig?1tTLf','

stahments It'g. A'"' 8: ("",OJ, substituting sll1qle qu.otf," hlr duuJjl~ qu.nr.s sUl"""'{I!.nd;f"'Q

literal nmSrant3 and Temol'lng mf'ssage strlTlgs /rrn'l STOP Itatrments E'.n S0. r1H

('flanges requtrt>d u'€n far {eun than c07P'errlng one dLOlur of BASiC to a71rJl!tu u hrr'h

tllu.;;tratts tht adt'ontaqf rd programming ITI a reaslJnabll,f standa~dtud languflgf

a'f- ron rhf' programs luted 1aere u'lth M1CT(),~otr FORTRA.\'·80 !.IT/d.r (-P·.\1 and

()l,talned the sana rfsults listed by the author tTl Tobit 'I', Olf Mzly dl.tI"HP1N tJ/-tng that

r~t {PC tim. ~ ut"rt about tu.'o orders of magnttude gnaff'r Lanff RIIH THhnl(a:

Edt(('r

Listing 1

unsurprisingly, the number of nodes generated.
The last point raises the question of what is a fair

solution. In some sense we want generality because this is
what a human who plays the puzzle uses. Any program
which has 21 different procedures for each of the 21 start
states would have to be rejected. There are at least two
ways one could enforce generality and toughen the problem
a bit. }) Demand that the program perform well when given
a partially solved puzzle; thus instead of 21 start states,
there are thousands. 2) Don't tell the program until input
time what the exact board shape is. It might be told upper
bounds on size, but no more.

I hope some of you have as much fun wjth computer hi-Q
as have my students and 1.

was described earlier.
MOVE (listing 6) makes all possible next moves and for

each one calls CREATE (listing 7) to generate the successor,
check it for goal status and put it on OPEN, if appropriate.
When a goal is found, SOLVED (listing 8) is called to print
out the solution along with the number of nodes generated
and expanded to reach it. The solution is a display of twenty
successive board configurations from start to goal.

Newly created non-goal nodes are passed by CREATE to
SEARCH (listing 9), If a node is no more than seven deep,
SEARCH calls DCPE to compare it with nodes already on
OPEN and CLOSED. DUPE checks for symetric duplication
on the first three levels and perfect duplication thereafter
(see listing 10). If a duplication is found, then SEARCH frees
the node. Otherwise it is inserted into OPEN by FILE
(listing Ill, lowest F values first and ties broken lexically.
LEXCOMP (listing 121 compares game states and tells which
is lexically smallest.

The names and uses of all global variables are tabulated
in listing 1.

Conclusions
Ed's results suggest how humans can playa better hi-Q

game. I can't do the computations for algorithm 5 in my
head very fast, but I do find that algorithm 4 improves my
game. Ed's results also indicate that the best computer
search strategy for hi-Q has yet to be found. Among the
ideas that have not been thoroughly explored are these: a)
weight the board squares in a graduated fashion that is
more subtle than any of algorithms 2, 3, or 4; bl reward and
punish certain clustering patterns like three colinear pegs or
density around center of gravity, that are independent of
particular board squares; c) change the strategy according to
puzzle depth; dl combine strategies in a weighted fashion
and then look for the best weights.

To what extent is it cost-effective to check for duplicates
on OPEN and CLOSED? I don't know. Perhaps a good
heuristic goes so directly to the solution that there is little
need to worry about duplicates.

There is another unanswered question: What is the size of
the hi·Q space?

There are several harder versions of the puzzle that
people often prefer. Consider using pennies instead of pegs.
Replace one of the pennies with a nickel and demand that
the nickel be the last coin on the board. Harder still, demand
that the nickel be left in the center. Another variation: use
all pennies and demand that the last penny be in the center.
Joel Arnold wrote a very nice search program to solve this
problem. He worked backwards. depth first, from the goal
and found the following heuristics effective: a) down to an
intermediate depth, concentrate on filling the perimeter of
the puzzle; bl in later stages give orthogonal moves
precedence over diagonal moves; c) up to the last move,
filling the goal spot is rewarded and emptying it is
penalized. (The last move must empty it.) Another ruse: he
sought any state symmetric to the desired goal. If the found
state was not the goal. transformations were made on the
sequence of moves, yielding a true solution. I'm not sure
that this is "fair." It does improve average CPU time, and.

T'1e Compute' Jovra 9

Listing 2 Listing 4b

Listing 4c

Listing 4e

Listing 4d

1: POIN"!'ER '1'0 Nl':WLY--CRU.TED IiODE:

I: POINTER '1'0 NZWLY-CRUTEO IIOO!:

T'RE NtI'IBER or COfUlER PENN I E:S

1 : PO I HT!:R TO NEWLY -CREA1'1:0 IIOO!:

PA.JlAIIfETERS ;
PTR

LCX:AL VARIABL.!S:
COlOreR

PAJIAIIIETER5:
PTR

LOCAL V....RIAB~S:
COUNT - 1111: aruMBD or SUCCESSORS or TIlE PASSED .cD!

PAIlAME'TERS:
PTR

LOCAL VARl.ABLZS:
COUIIT - TRI!: Nl.M8!R 0' PEIINIES IN 'I"HE 9 CEH'TRAL LOCATIONS

PAIlAME"l'ERS:
PT.

LOCAL VARIABLES:
COllIn' - TIl!: NUilB!R 0' PEllNIES III THE 4 PIVO'I'AL LOCATION'S

SUBROln'INt: £VAL (P"fR)
C mE F-VALUE IS CALCULATED POR ORDERUIG NODf:S ON THE GPf:N LIST.
e
e
e
c
e
e

SUBRoUTIe EVAL(PTR)
C THE fo'-VA.LU!: IS CALCULATED POR ORDEaIIlC NODES '* TIl!: OPEII LIST.
e
c
c
e
c
c

SUBROUTINE EVAL(PTR)
C THE F-VALUE IS CALCULATED POR ORDERING NODES otI THE 8PEH LIST.
e
e
c
c
c
e

H1TEGER BOARD, OPEIfL, PAJUlTL, CLOSDL, NPEIQIY
RUL F

C B<».JU) COIIPIGURATIOIIS WITH PEDIES III 4 PIVO'fAL LOCATIONS
C ARE 'AVORED.

IIIT!:GI!:R PTa, COUII'T
C'QItMOII/NODl/BOARD{ 5, 5,31"). OPE8L{ 3.8), PAIUl'l'L(J88).

" CLOSDL(38.),P(3.1).MPEII1fY(3.")
COUIIT-e
1'(BOARD (2, J, PTR) .EO.l) COUIIT-<:'OU1!I'I'+l
IP(BOARO(J. 2, P'I'R) .EO· 1) COurr-eouBT.l
I P (BOARD (J. 4. P'T'R) . EO. 1) Comrr-C'OUIIT+ 1
I' (BO....RD (.. , 3 , PTR) • EO. 1) C'Ol1IIrI'<OU1n+ 1
P(PTR)-'LOAT(MPEIfNY (PTR))-PLOAT(COUN'I'} 15. I

Rrl\J"
'No

IKT!:GER BOIt..RD, OPENL, PARBTL, CLOSOL. NPEHNY
RULF

C BOARD COHPIGURATIOIIS WITIt PEIDIIES IN 9 CENTRAL lOCATlotIS
C ARE FAVOREr;.

III'TEG!R PTR, COfJlIT
C'ClMMO!II HODE!BOARD (5,5,388), OPElIL (318), PARNTL{ 380).

" CLOSDL(]8111),'(38111), NPE.JrrlVY(38f1)
COUIIT'"""
001881-2,4
DO 1"" J - 2.4

II" If (BOARD (1 ,J , PTa) . EO. 1) COUllT-C'OUllT.l
F(PTR)-FLOAT(NPE1<IIY(PTR)) -rLQAT(COUlIT) lIe. e
RETURN
EIJD

INTEGER BOAJlD,OPEllL, PAIUP!'L, CLOSDL,.PbII'Y
RUL F

C THIS EV.... LUATIOII P'UIIC'TION REDUCES TR!: ACTUAL P VALUE (MOVES TO
(' SOLUTION) BY A PI,ACTIOti PItOPOltTlOllAL '!'O THE IItIUIER OF CItILDREN
C CF THE: NODE, THUS ,AVOILIItC THOSE~ C<*FlGU~TIOliS WITft ~
C GREATEST NlIm!R or SUCCESsoa IIODES. BY CC*VI:lt'rlMC ~ 1R.II(811.
C DE' CHILDREN lllTO A PRACTIOII LaSS TIlA1I CWZ (TIlE MAXIMU'lI If1..ItBER OP
C SUCCESSOR NODES IS C 31), WIt RZTAIN A DEPTH-PIRST 8&AJtCB.

INTECER PTI:,courr
C(»UotON IIIIODE/8OAJlD (5. 5, 3..) , OPDL (3") , PAaIPI'L« 3••) ,

" CLOSDl(81) ,P(JU) ••PEIIII'Y(lH)
couwr-8
0018el-l,5
DOlliJJ-l,S

If'(80ARD(I,J,"") .•• 1) GO '1'0 IN
IF(I.LT.) GO '1'0 1.
IF (BOARD(1-1,..:J. PTII). EO. 1 .AJID. 8OAJU)(1-2, J, PTI:) • EO ••)

COUNT-eot1II'!'+ 1
18 IF(I.LT.J.OR.J.G'I'.J) GO TO 2.

I r(BOARr{ I-I,J+1, PTR) .EQ.l.AII'D.8OA.AD(1-2,.1+2, P'I'J:) .10.1)
COUNTooCOCJIrr·l

28 IF'J.GT.31 GO TO 3.
IF (BOARD! 1, .1+1, P'fR). EO. 1 .AIm. 8OAJU)(1. .1+2, PTa I. EO. I)

COUN'T-eoc..wr+l
31 IF{I.GT.3.0R •.1.GT.3J GO TO 4.

IP(BOARD (H1,.1+ 1. PTa) • EQ. 1.AIID.IK»dlD(1+2 ,J+2, P"Mt). EO .el

COUNT-eotIII'!'+l contpuH.d

INTEGER BOARD,OPENL, PARNTL,CLOSDL,NPENIllY
RULF

C BOARD CONFIGURATIONS WITH FEVEST CORtaR PENlIlIES ARE fAVORED.
INTEGEP P'TR,CORlR:Il:
CQMMQlII/HOOE/BOARD(5. S, 31e) • OPEIIL(]8e) . PARN'TL (Jee j •

, CLOSDL (38e) , F (388) , HPEHII'Y (380)
CORHER=e
IF(BOARD (1.2. PTR) . EO. 1 CORHER=CORNER.I
IF(BOARD (I, 4, PTR) .EO. 1 CORNER<ORHER.l
IP(BQARD(2, I, P'TRI.EO.l CORH!R~ORNER"'I

1Ft BO.... RD (2,5, P'T'R) . EO. 1 C()RN!R-eO~f:R.I

IF(BOARD! 4, I, PTR). EO. 1 CORNER =CORNER'" 1
IP(BOARD (4,5, PTR) . EO. 1 COlUIlR':OIUlER+I
IP(BOARD I 5.2, PTR) . EO. 1 CORNE P-.cORN[R +1
IF(BOA.RD (5,4, PTR). EO. 1 CORIIlR""CO~r.:R+ 1
F(PTR) -Pl..OAT(tlPEHNY(PTR))+PLOAT (COIUiLR) I 18.

RE"'''END

SUBROUTINE EVA.L(PTR)
C THE F-VALUE IS CALCULATED POR ORDERING NODES 011 TIlE OPEN LIST.
e
e
e
e
c
e

SUBROUTIR nUT
c THE INITIAL BOARD COIlPIGURATIOIll IS GEIlERATED AND FILED ON OPEN.
C -!VAL- IS CALLEO TO COMPUTE ITS F VALUE. POINTERS ARE INITIALIZED
C
C LOCAL VARIABLES:
C P'!'R - POIHTER TO NEWLY-CREATED INITIAL NOD[
e

INTEGER BOARD. OPENL, PAR!'ITL, CLOSDL, NPEIINY. H&AO
, ,OPHEAD,CLHUD.RRGEN.NRVCP.MAXNOD

REAL F
INTEGl:Fl PTR
COMMON/BOOE/BOARD(5.5.388). OPENL(30£1). PARHTL(3ee).

, CLOSDL(3eel,p(3eS).NPEN1lY(3Ie)
COf9tON/LISTS/HEAD, OPHEAD, CLHEAD
CC»tH.C*/ CTRS/NRGEN. IlIRUP, MAXNOO
eLilEAo-ll
OPHUD-8
HEAD=l
NREXP-iJ
NRGDi=l
DO 18e I .. 1.2~1l)

18£1 OPENL(I }=l+l
OPENL (388) =£1
CALL GE'T'NOD (PTR)
00 288 I • 1,5
002eeJ=1.5

2S£I BOARD (I. J, M'R)=1
BOARD (1. 1, PTR)=9
BOA.RD(1.5.PTR)=9
BOARD (5,1, PTR)-9
BOARD (5.5, PTR)=9
READS THE INITIAL OPEN SQUARE FOR THIS GAME
READ(l,3ee) I,J

3ee FORMAT(213)
BOARD (I,J, PTR)",,"
NPEllINYlPTR)=28
OPENL (PTR) =e
CLOSDL (PTR l """
PARNTL (PTR) ..e
OPHEAO=PTR
CALL !'VAL (PTR)
RETURN
UD

Listing 3

SUBRClYTIHE fREE 1PTR)
C DATA AREAS NO LONGER NEEDED ARE RETURNED 1'0 THE LIST Of AVAIlABLE
C HODES.
C
C PARAJlIETERS:
C PTR I/O: POtHTER TO US£D NODE BEING RETURNED TO THE
C LIST OF AVAILABLE NODES
C

IIfTEGER BOARD, OPEIrlL. PARH'I'L. CLOSDL, NPENWY. HEAD
I. ,OPHEAD. CLHEAD

REAL f
INTEGH(PTR
COMMON/NODE/BOARD (S. 5,)8") • OPENL (388). PARHTL(388 l,

" CLOSDL(3ee). F(38"). NPENNY (lee)
C()HIIIIION/ LISTS/HE:AO,OPHUD. CLHEAD
PARlfTL (PTR)::IE8
CLOSDL (PTR) =8
IiPENNY (PTR) =-8
F(PTR) ...e.
OPENL (PT'R) :cHEAD
~P'l'R

PTR'"
RETURN
END

I1rnGER BOARD, OPElrL, PARrrL, CLOSDL. MPZJINY
REAL P

C TIlE ~ALlJATIOli rUllC"rIOll SIMPLY EQUALS THE NtJr4BER or MOVES
C TO THE SOLt1rIO., USULTIMG IN A SIMPLE DEPTH-FIRST SEAJlCH.

IVTEGER PTR
CCJ8K)II/ItOOE/BOARD(5.5, J ..), OPEJIL(3••), PARrrL (J••),

, CLQ&DL(J8Sl.P(388),NPZIrWY()••)
P (P'!'R) -pLQkT (.PEIIWY (PTR))
Rrl\J••
EIID

SUBROUT I R GETMan (PTR)
C AVAILABLE MTA AREAS POR NEW NODES AIlE RE1'URlfED
C TO THE CALLING ROUTINES.
C
C PARAMETERS:
C P'!'R - c,; POItrrER TO AVAlLABL.E .oDE DATA AREA
e

INTEGER BOARD. OPUL. PARII'I"L, CLOSOL, NPEIRfY, HEAD
" ,OPHEAD,CLHEAD,NRGEB. NIlEXP. MAXIJOD

REAL F
IrrECER P'l'R
Ca4MON/MOOE/80AJ.D(5.5. 38e). OPENL(3M). PARllTL{ 3ee),

• CLOSOLoeel.F(Jee).NPEIIIIY(Jee)
COf9tON I LISTS/HEAD. OPREAD. CLHEAO
C'QIIIIMON / CTRS InGEll. WIlUP. MAXliOO
DATA lWQIoo/el
IP(HEAD.EO.Je.) S'!'OP 2
"a-READ
I P (PTR •GT •MAXIIOO) MAXIIOD-PTR
HUD-OPEIIL (PT.)
IlETIJRN
un

SUBROUTINE EVAL(PTR)
C TIlE F-VALUI!: IS CALCULATED POR O~ING MODES ON THE OPEN LIST.
C
C PARAMETERS:
C Pn: I: POUlTER TO NEWLY-CREATEO 1I00E
e

Listing 4: The five elvaluation functions sampled are shown.

Listing 4a

10 The Computer Jour'1al 'II

Listing 4e, continued Listing 7 't

Listing 6

Listing 5

4e If(I.GT. J I GO TO SI
Ir(E~oAfHI(I+l,J. P'I"R) .~O.l.AJID.~D(H2,J. PTR). EO. 8)

COlIHT:.COUWT'")
SfJ IFtl.GT.J.OR.J.LT.3) GO TO 6.

1 II' (BOARD(I .. 1. J-l. PTII) • EO. 1 .AailD. 8OA.R.D(1+2. J-2. Pn.) . lO. e)
COUNT:COUWT+ 1

60 IF(JLT.3)GOT071
IF (BOAJW(J ,J-I, PTR) .EO.l.AJID. BOAIlD(I, J-2. PTR). EO. ej

COUN'T'''''COlJV'T+ I
78 IFII.LT.J.OR.J.LT.3) GO TO 1••

IF (80ARL' (1 -1. J-l, PTR) . EO. 1 .MD. Ba.\JU)(I -2. J-2, PTR l .to. t!I)
, COUN1':::=('OUNT.l

le8 CONT I NUE
F' (PTR) :cFLOAT (NPf:lrRiY (PTIl))-FLOAT(COUWT); 38. f!l
IF(COUNT.EQ.e) P(PTR)·U'....
RETURN
ENP

INTEGER BOARD, OPENL, PAR.NTL, CLOSDL, NPEHN'Y
REAL •
IIITEGER PTR, HILEV, PAREH'r, HLDP'TJ\
C<»4M<:JN !NODE; BOARD (5, 5, 38(1'). OPENL(3ee}. PAJUITL(388),

• CLOSDL(388),P(388),NPEHNY{388)
IF(NPENliY(PTR).LT.HILEV) GO TO 188
IF (IlPENNY (PTR) . GE . 13) RETURN
CALL FREE' P'TR)
R£TUIU;

18e HLDPTR=PTR
PTR""8

28. PARElifT=P1I.RN'TL{ HLDPTR I
IF(NPENlIY(H.LDM'R).Gl..13) RETUJUri
CALL FREE (HLDP"rR)
IF(NPDnlY(PAREN"I') .GT.HILl.'V) RE"t'URN
HLDPTR=P1I.REWl'"
GO TO 288
~IID

• !II

,1/

,"

."

."

'.

."

I:POINTER TO SOLtn"IOII !iOOE

POUlTER TO IIll:WLY-CJlEATED SUCCESSOR NODE

POInER USED TO TltAY'lRSE 1'IIB OPO AIfD CLQ6IW LISTS

1/01 PO I lI'I"E'a TO IrZWLY-CRItATZD IIODE

- AIlRAY OF POIftERS TRACIIIG PATH Fa"" ROOT NODE
TO SOLUTIOII

PARAMETERS :
PTa

LOCAL VARIABLES:
PRTPTR

PAAAM"ERS:
PTR I I POINTER TO NODf: BE INC !XPABDlC
L.M I :COORDII.ATES Of -J~P PROM- POSITION
N.O I ; COORDINATES OP -JUMP-QVER- POSITION
P,O - I : COORD I IlATES or "'JlJItP '1"0. POSITION

l.OCAL VMl; IABLES:
NEWPT.

PAJlNtET'lRS:
PTa

LOCAL nalABlZS I

MOVPTR

SU8ROU'TINE SOLVED(PTR)
C THE SOLUTION IS PRIIIII"I"ED OUT, A.LOtiC WITH '!'HE NtMBER OF NODES
C GENERATED. THE Nt.JItBER EXPANDED. AND TtfE MAJCIMUH IItJItBER OF IIODE
C OATA AREAS IN USE AT ota TIME IN REACHING THIS SOU1TIOII.
C
C
C
C
C
C
C

5UBaOlJ'T11I! C!llAn (PTa, L, M, N, 0, P. 0)
C THE PAREH'r HODE IS COPIED INTO A ND MTA AREA, THE H-
e MO~ IS ""-'DE, A1iD POINTERS AU SET. IP THE GlN1:RATf:f
C IS It SOLUTIOii', IT 16 PRIN'fED OUT UD EnCUTIO. STOPS.
C
C
C
C
C
C
C
C
C

INTEGER BOARD. OPENL, PARJlTL. CLOSDL, HPEMIlY. nGD
.. ,NREXP, MAXHOD

REAL •
I IIIITEGER P'rR, PRTP'TR (28)
C,",""/NOOr:/BOAllDI5, 5. 3••) ,opr:NLI3••). PARJlTLI3••).

• CLOSDL(3821). F(3ee}. NPENWY (38e I
cOMMON,'CTRs/IIIIJlGDi. NREXP, MAXNOD
WRITE(I. IHe l NRGr.:.,IIII1lEXP
PRTPTR (1) -PTR
00 S8 I - 2, 2e
I l-PR'f'PTR(I-I)

50 PRTP'!'R(I)-PARNTL(I I)
00 288 K ·1,17.4
14-21-1(
II-PRTPTR(I4l
14-2.-f(
I 2-PRTPTR (14)
I4-19-JIt
I3-PRTPTR(I4)
14-IS-1t
14""PRTPTR (] 4)
WRITE(I, 2"8)
00 2.8 I - 1, S

2." Wfl:ITE(1, 3tHJ8) (80ARD(I, .1.l1l,J'"'l, 5),
• (BOARD (I • J , 12) • J-l. 5) • (BOARD (I ,J , 13) •
, J-I,Sl,(BOARD(I,J.I4),.1-l.S)
dIn(I. 4.") MADOO

18ee PORMAT(IRl,18.' MODES GEllE:RATED',5X, lB. , MODES !:XPABDED')
2e.. FORMAT(IH)
3."" FCRMAT(IH ,4CSI3.2X»
48.. POJUllA.T(IH.,'MAXIIftIM)fODES l~ USE .',16)

IlETURIi
UD

IIlT!:GER BOARD, OPEn, PAJUiTL, CLOSDL, NPEIIlfY, NRGt.N
.. ,1lR.E.XP, IilAXMOD
UAL •
UIT!GER PTR.W'EWP"I'R,l,J.L.M,N,O, p,a
caotO./NOO~/80ARD(5.5.3••) ,OP~NL13••). 'AJU<'l"L(3.. 1 •

• CLOSDL{ 388), P(388) ,NPEIOlY(388)
caotoH l CTRS /NRGEIi, IlRV: P • MAXIiOD

CALL G!TNOD IIII':WP'I'R I
IIRGE}l"NRGEN+l
OP!RIIII':WP'I'R) ••
HP'EH1lY (JR:WPTR)-NPEHlIY(P"rR)-1
PAJUITL (Ill:WP'!'R) -PTR
00 lee I - L 5
DOlIl8J-I,S

III" BOAJlD (I ,J, IlEWPTR) -BOARD (I , J , PTR l
8OARD(L,M, NEWPTR)-tI
IlOAJlD (•• 0, .."".,..)-.
BOARD {P, O. NP;WPTR)-1
IP (.PENVY (NEWPTR) .1IE.l1 GO TO IS8
CALL SOLVED (HEWPTR)
STOP

l58 CO1M' I IfUE
CALL SEA..RCH(n:wPTR)
RETlJRM
~.[)

Listing 8

Listing 9

SUBROLrr 1 HE SEARCH« PTR)
C BOARDS WITl! 13 OR MOItE PEHliIES All CHECOD TO SEt: IF DUPLICATES
C EXIST 011 THE OPEN OR CLOSED LIST AIIO PU:ED IF THAT IS THE CASE.
C ntosE THAT AJlE UlIIOUE. UD ALL 8CAUDS WITA PDfER THAll I J PDIIIIES
C ARE PILED 011 THE OPEN LIST 1. I.cREASING ORDEIl: OF F V~.
C
C
C
C
C
C

JIrftGER Bc».ItD. OPElfL. PAJtBTL. CLOSDL••PDIn'. READ
.. • OPII&AD. CLIIKAD

R&AL •
Iwr.GU ".. •..,~.
LOGICAL DUPE
c.-JII/IIOOIl/1lOo\JU) (5, 5, 3..), OPEllL(3•• 1 ••UftL(3..).

• CL080LI3••) ,P(3••). MPEnY(3H)
c.-JII /LI STS/IIJW), OFtlBAD, CUDWl
IOOVPT1I-oI'BIIAO
IP(.PEIIIIY(PT.) .LT.13) GO TO , ..1.. IPCJCJ'VPI'a.l:Q.tI) GO TO 3M
1P(.ftftY(PTIII.R.......... (IOOVPTll» GO TO 2"
IPI.IIOT.DUPI!(..... ,IOOYPTII) GO TO 2..
CAU. P.... (PT.)
1lnV.

2.. IIOVPT1I<lPaIL (lIOVPT1Il

I '0: POINTER TO NODE EXAMINED POP POSSI BLE EXPAN
SIO~ JUST BEFORE THE NODE BEING CURRENTLY EXM
lNEO; THIS NODE COULD NOT BE EXPANDED; IF THIS
NODE: IS PRUNED, PTR IS S~ TO ZERli
! :"m: N'UttBtR OF PENNIES ON THE GAME BOARD OF THf:
NODI:: CURRENTLY BEING EXAJIIINEr FOR POSSIBLE
EXPANSION

POINTER TO PARENT NODE
- POINTER USED TO TRACE FROM THE PASSED NODE BACt<

THROUGH ITS PAREtn'S

HILEV

PARAMETERS:
PT,

LOCAL VAIl: %ABLES:
PA.Jll:!'OT
HLDPTR

SUBROUTINE PRUNE(PTR,HILEVl
C NODES WITH FEWER THAN 13 PENNIES BEGINNING WITH THE P.... SSED NODE
C Mm BACK THROUGH ITS PAREtrr NOD~S TO THE PARENT WITH -HILEV·
C N1..ICBER OF PEafNIES "R:£ RETURNED TO THE LIST OF AVAILABLE NODES.
C NODES WITH 1 J OR MORE PENNIES Rn4AIN ON CLOSED FOR DUPLlCATl-.: COM-
e PAR I SONS. - HI L£V" I 5 THE NU'tBER OF PENN I ES Oloi THf: NODE CURRENTLY
C BEING EXPANDED, WHICH IS WHr;RE OUR SEARCH HAS BACICED UP TC AFTER
C REACHING A DEAD END. BY PRUNING ONLY TO THE L.EVEL OF THE CURRENT
C MODE, WE DON 'j CRANCE ELIMINATING PA..REHT NODES or AN EVEN"rUAL
C SOLUTION, BUT WE WILL ELIMINATE ALL DEADEND BAA}IlCHES BELOW THE
C 13 PEN!\TY Lf:VEL.
C
C
C

C
C
C
C
C
C
C
C

C
C

C

SUBRotrr'IR MOVE(PTR)
C ALL POSSIBLE NVC"r MOVES ARE TAItDI, GEHERATING EVERY SUCCESSOR
C TO THE CURREN"r MODE.
C
C PAJlAIIfJE'TERS:
C ~ I tPOUITER TO NODI!: BEING EXP.....DI!:D
C

IIr'!"EGER BOAJlD, OPEllfL. PAIUlTL. CLOSDL. NPEJDIY. NRG!N
... aREX p. fitAJQiOD
UAL •
urnGER PTR
C'-"'/MOO~/IlOARD(5,5,3••) ,OI'ZBL(3••). P.........L(3••).

.. CLOSOL (3••) • P (le8) ••PEIIWY (Je8)
C'()MtK)IJI!CTRS ISRGO. 1IJtEXP. MAXIIOO
IIIIUX~REXP+1

00 18., I - 1.5
OOUJ.,J"I.5

I.(80AllD(I,J,PTR).IIE.I) GO'l<l I"
I.(LLT.3) GO TO I.
1.(1lOARD(I -I, J, PTa) .EO. LAIfD.IlOARD(I -2. J, PTR) . EO ••)

CALL CRZAft(PrR. J.J.l-1.J',I-2.J)
18 IFO .LT. 3.0R •.:J.e;,".]) GO TO 28

IP(BOAJW(I-1.J+l, P'I"R) .EO.l .UD.BOARD(1-2. J+2, P'l'R) • EO. e)
CALL CRBATE(P"!'R. I,J. 1-1. J+I. 1-2. J+2)

28 IP(J.GT.J) GO TO 3.
IP(.B<lAJt.D(I, J+l. PT8.) .EO. 1 •AlII). 8OAJU)(I. J+2. PTR) . EO.')

CALL CJlEATZ(Pr•• I.J, I.J+I.] ,J+2)
38 IP(I.G'f.3.0R.J.GT.3) GO TO ••

IP(BOARD(I+ 1. J+ 1. PTR) • EO. 1 .MD. BOARD (1+2, J+2, PTa) . EO ••)
CALL CREATE(PT8.. 1 .J. 1+1..J+i. I+2,J+2)

.8 IP(I.GT.3) GO TO 58
IP(8OAJtD(1+1, J. PTR) • EO.l .AIID. BOAAD(1+2. J, PTa) .EO ••)

CALL CRMTE(PTR. I.J. I+L.J.l+2,J)
5. U'(I ,GT. 3.0•. J .LT. 3) GO TO ,.

IP{BOoUlD(1+1, J-l, PTI:) .EO. I.AIID. 8OUD(1+2, J-2, Pra) • EO. 8)
CALL CItBATB I P'l'R, I. J. 1+1. J-l. 1+2. J-2)

,. IP(J.LT.3) GO TO 7.
IP(1lOo\JU)(I, J-I, PTR) . EO. LAIfD.IlOo\JU)(I ,J-2, PT.) . ~O ••)

CALL CREAft(P'I'a.l.J.I • .J-I.I,J-2)
78 IP(I.LT.3.Da.J.LT.3) GO TO IN

IP(8OrIU.D(]-1, oJ-I. PTIt) .£0.1 .AIID.IIOAJU)(l-2. J-2, Pn) . EO.8)
.. CALL CRBATE(PTR. I.J.I-I • .1-1, I-2.J-2)

IN COW!'IIIUE
UTUU
II:IID

Listing 10. continued
Listing 9, continued

Listing 10

•

POIN"rS ore

I : PO I HTER TO NEWLY-CRLATED NODE

POHM"ER USED TO TRAVERSE OPEN L I sr
THE HOOf: CURRE,N'T'lY BEING CClI'IP"R.!C Tt 'T'Hl NE'o< NON_
POIN'I'ER ALSO USED 'TO TRAVERSE CPEfii LIS7. PC Urt'S
TO THE ItODE LAS'!' CCl"lP",R!D '!'CJ THE NEW NODE:

- I: POIN'I'ER TO NEWLY-CRUTl'.:D NODE
- I :POINTER TO IiODE ON OPEN LIST WITH A.H r nLUE

lDERTICAL TO THAT OP THE NEWLY-CREATlO NOCl

LAGPTR

PARMETERS:
.... 1

""'2

PARAJIlETlRS:
PT'

LOCAL VARIABLES:
MOVl'TR

IJITEGER BOARD. OPEn. PAJUrlTL. CL05DL.IiIPDfNY
REAL P
IIITEGER PTRl, PTR2
COMMOII/NODE/BOA.R.D{ 5.5.3••). OPEJIL(Je.), PAJUfTL(3ee).

" CLOSOL(3.8l,p(3"S).IJPEBIrY(3.")
DO 188 I - 1.5
001e.J-l,5
IF(8OARD(I.J,PTRI).GT.BOAR.D(I.J,PTR2» GO TO 15"

1•• IP(BOI\JU)(I,J.PTRl).LT.BOAJU)(I.J.PTR2» GO TO 2••
1S. LDCMp·. PALSE.

UTUU
2M LEXCMP" . TRUE.

UTUU
EIID

LOGICAL PUNC'TION LEXCMP(PTRl,P'I'R2)
C IP P'l'Rl'S)lODE HAS " BOARD COtIPIGURATION TBAT IS LEXICMLY LESS
C TBAlII PTR2'S. "'TRUE- IS RE'nJlUfED. ~PWlSE. THE fUIICTION
C RrnJUS "'PALSE"'.
C
C
C
C
C
C

1 F I OUP!} RE'MJRJi
DUPE- . "tIttlE .
00 81e I - 1,5
DO Bee J - 1.5
JI-6-J

ele IP(BOARDO.Jl.PTR).NE.BO....JW(JI. I,TSTPTRl l DUP!"'.FALSE.
U'!'\JRII
EHO

Listing 12

nrrEGER BOARD. OPEn. PARHTL. CLOSDL, NP9NY. HEAD
•• OPHEAD. CLKUD

REAL P
I mGER PTR. MOVPTR, LAGP'f"R
LOGICAL LEXOlP
COMMON/NODE/BOARD { 5.5.)8fI). OP'!HL (38" 1• P"RNTL ()88) •

" CLOSDL()8Sl.f"(388l.NPEH1IY()8P)
COMMON/LISTS/HEAD. OPHEAD. CLREAC
IF(OPHF.AD.NE.fJ) GO TO lee
OPHl.AD-PTR
RE'l'UIUi

Ie. IF(F(PTRj .GT.F(OPBUD» GO TO 2"8
IP(P(PTR) • EO. P(OPHUD) .AlU). LEXCMP (OPHEAD. PTR))

" GO TO 28"
OPEn (PTR) -oPBEAO
OPBEAD-PTR
U-TURN

2.e LAGP'!'R-oPIIEAD
MOVPTR-e>PEIJL (OPHEAD 1

3.. IF(MOvPTR.EO.8) 00 TO 48.
If'(P(PTR) .LT.P(MOVPTR» GO TC ...~
IF(F(PTR) • EO. F(MOVPTR) .AIlD. LLX01P (PTR, MOVP'TR))

" GO TO ._
LAGP'!'R~(lVPTR

MOVPTa-oPEn (LAGP"TR)
GO TO Jee

.tee OPEn (P"rR) IOIIfItOVPI'R
OPt:m, (LAGPTR) - P'fR
RE'l'UIUi
EIlO

Listing 11
SUBROUTINE F'ILE{PTR)

C NODES A.U F'IL.ED DIll THE OPElri LIST ACCORDING 1'0 P-VMlJE. LOWEST fIRS;.
C LUIeAL CCJIlPMUSONS ARP USEr, TO BR.LV: TIES BE'IVElN f VALUES.
C
C
C
C
C
C
C
c
c

I :POINTlR TO IfEWLY-CRLAT'EO NODE
I: PO 1IilTER TO A HOOE oto THE OPEN OR CLOSED LIST

PAR.AMETERS :

PT'
TSTP'I'R

LOGICAL FUNCTION DUPE(PTR.TSTPTR)
C ", -TROY· VALUE IS RETUR}lED IF THE PASSED NODES ARE DUPLICATE
C CONFIGURATIONS. BOARDS WITH 19,1B, OR 17 PENNIES A.RE CHECIQ;O
C FOR BQ'I'l'i PERPEC":" .\ND SYMMl:TRIC DUPES (4 ROTATIONS TfiROUGH BOTH
C MIRROR IMAGE REPRESElITATIOIiS). BOARDS WITH LESS THAN 17
C PEI!DUES ARE CHECICEO ONLY FOR PERFECT DUPLICATES.
C
C
C
C
C

GO TO ute
388 MOVPTRooCLHEAD
.90' IPlMOVPTR.l:Q.9) GO TO 6••

IF (IIiPE!ilIY(PTR) .NE.liIPEHNY(MOVP'fR) l GO TO see
IF(.NOT.DUP~(PTR.MOVPTR) GO TO 5..
CALL PREE (PTR)
RETURIiI

see M0VP"I"R<"LOSDL (MOVPTR)
GC TC 4"8

68e CAI..I... EVAL(PTR)
CALL PlLE(P'l"R)
RE'l'URJ<

""0

INTEGER BOARD, OPEIlL, PARNTL. CL06DL.IIPENIlY
REAL P
IllI"!'l.GER PTR, TSTPTR, 1. J
COMMON; liODE/eOAJlD(5. 5, 388). OPENL(388). PARNTL (388),

, CLOBDL ()B0) • F (30e l. HPElrfNY \ 380)
DUPEe.TRUE.
00 188 I '" 1.5
DOleeJ-l.5

18e IP(BOARDl I. J. PTa) .HE BOARD (I ,J. TS"rPrR» DUPE-.PALSE.
IP(DUPE) RETURlI
IF UIPElIIJY (PTR) • LT. 17) R.rrURN
DUPE'" .TRUE.
00 2118 1 - 1.5
1l~-1

00 21e J - 1,5
2.e IP(BOJ,.RD(I. J. PTR) .N!:. BOARD{J. II, TSTPTR» DUPE-. FALSE.

IF (DUPE) RE1'tJU
DUPE- . TRUE.
DC 31e 1 - 1.5
11-6-1
D03IeJ-I.5
JI-6-J

3e8 IF{ 8O.a.RD(1, J. PrR) .N!:. BOARD (I I.JI, TSTP'TR» DUPE-. FALSE.
IP (DUPE) RETURII
DUPE-.TRUE.
00 488] • 1,5
004eeJ-I.S
Jl-6-J

4e8 IF! BOARD (I. J. PTR) .NE. BOARD(JI, 1. TSTP"l'R» DUPE-.PALSE.
IP(DUPE) RE'TUR1lI
DUPE-. TRUE.
DO see I - 1,5
OOS8eJ-1,5
J1~-')

Se8 IP(BOARD(I,Jl, PTR) .NE.BOARD(I,J."STPTR» DUPE-.PALSE.
IP(DUPl.:) RETU1UI
DUPE'" . TRUE.
00 6ee I .. 1,5
11-6-1
D061BJ-I,S
Jl-6-J

6ee IP(BOARD (I. JI. PTR) .NE.BOAR.D(J. II,TSTP'!'R» DUPE-.FA.LSE.
IF (DU PE) IlETURII
DUPE- .TRUE.
00 7ft I .. 1.5
Ilc6-1
DO il" J .. 1.5
JI-6-J

7" IF(BOARD(I.J 1. PTR). NE. BOARD (I I.Jl. TSTPrR» DUPE:.PA.LSE.

Did You Miss Any of These Issues?
To order boacI-<, 1~5ue5. 5end il3 25 (Includes DOstage,! to The Computer Journai PO Bolo(1697 Kalispell MT 59903 Allow 3 to (1 week,5 for delivery

Volume 1, Number 1:
o Th. RS'232.~.ri.1Int.rf•••. P.rt On•.
o T.I••0i!.G'lng Wllb,.ill. Appl•• , Tranal.rring Bin.ry Fil••.
o BegilKl"", Colce.~.rtOn.: Anyon. for a Littl. "KISS" Electroni.,?

• Build an "Epram."

Volume 1, Number 2:
• File Transfer Programs for CP/M.
o Th. RS·232·C S.ri.l Int.rf•••. P.rt Two.
o BUIld. H.rdw.r. Print Spool.r. P.rt On•.

o A R.vi.w of Floppy Di.k Form.t•.

o S.nding Mors. Cod. With .n Appl."
• Beginner's Column, Part Two: AnyonI'" {or a Little "KISS" Electronics?

Volume 1, Number 3:
o Add.n 8087 M.th Chip to Your Du.1 Proc...or Board.

• Build.n AID Converter for the Apple"
• ASCII Ref.rence Chart.
• Modems for Mierol.
o The CP/M Operating SYltem.

• Build. H.rdw.re PrIDt Spool.r, P.rt Two.

Volume 1, Number 4:
• Optoelectronics.

• Multi-user.

• Making the CPfM User Function More Useful.

• Build. Hardw.r. Print Spool.r, P.rt Three.
• BeglDner's Column. Part Three: Power Supply. Anyone for a Little "KISS" Electronics:

Volume 2, Number 1:
• Optoelectronic•.

• Multi,u$er.

• True RMS Meuuremenu
• Gemini-lOX: Modifications to allow both serial and parallel o~ratioD.

Volume 2, Number 2:
• Build. High Resolution S·IOO Gr.phi.. Board

• System Integration
• Optoeleetroniea. P.rt Three: Fiber Opti..

• Controlling DC MotoTl

• Multj·Uler
• DC Motor Application.

12 The Computer Journai

Build a High-Resolution S-100 Graphics Board
Part Two: Theory of Operation

by Lance Rose, Technical Editor

...

I n the first part of this series we saw how the video
monitor uses its sweep circuits to create a raster scan with

which text or graphics information can be displayed. In this
installment I'll explain how the video board operates in
order to send the desired information to the video display
device.

Figure 1 contains a block diagram of the graphics circuit.
Let's look at each block and its function in turn. The state
generator contains the state information for each of the
possible logic states that the board can have (more about
"states" in a momentl. It is essentially the brain of the board
and all the other parts center around it. The scanning block
continuously scans the video RAM and extracts information
a byte at a time for display. The video output circuit
combines the scanned information with timing information
provided by the state generator and outputs a composite
video waveform of the proper amplitude and impedance.
The arbitration circuit controls when the video RAM may be
accessed by the system for updating or reading information
stored in it. And finally, the bus interface circuit contains
the necessary buffers and control lines to interface the
graphics board to the S-100 bus.

Before looking at the actual schematic, we need to
understand a bit about what a "state" is. If this is redundant
to you advanced builders. please bear with me for a moment.

Intuitively one might think that a state is a set of
conditions for a circuit which has all signal levels and
timings specified, and in fact that is pretty much it. What
we are using here is called a "state machine" which is. in
simple terms, just a ROM or set of ROMS where each
memory address of the ROM(s) causes the pertinent
information for that state to be output on the data lines.
This pertinent information is:
(1) how long the current state lasts.

/

Bus
Interlace

v,oeo Ram

Figure 1· Block Olagram of the graphiCS crrCult

(2l the necessary output signals for this state in order to
control the rest of the circuit, and

(3) what the next state will be.
Complier-ted state machines can perform things like looping

and branching to other states (microprocessors are examples
of complicated state machines) but here the circuit is
simplified by assuming the next state to always be one
address higher in the ROM than the previous state. This
does away with looping and branching (not needed here
anywayl as well as additional ROM space to store the
address of the next state. This method is analogous to the
program counter in a microprocessor which simply fetches
its next instruction from the next higher memory address
unless a branch occurs in the program.

When the highest address of the ROMs is reached, the
address counters simply "wrap around" to the first state
again. Since we're dealing with a full interlaced video frame,
this wraparound occurs every 1/30 of a second.

Let's go through the circuit in Figure 2 and look at how
the various parts function.

Two of the gates in VI are arranged in a conventional
crystal oscillator with a third gate serving as a buffer. This
oscillator is known as the "dot clock" since a new dot on the
horizontal line is displayed with each clock cycle. The
16MHz value is chosen as a frequency which will be
compatible with most video monitors. i.e. will not cause the
display to go off the edge of the screen but will give a full
screen display. If insufficient adjustment is available in the
monitor to view the entire horizontal extent of the display, a
higher frequency crystal can be used and the values in the
state ROMs changed. Conversely. a slower clock will widen
the horizontal display. Another choice is to program the
ROMs to display less than 640 horizontal dots. One nice
thing about a state machine is that it can be reprogrammed
to tailor the board to different systems. It is possible to be
compatible with some foreign TV standards by doing this. I
will discuss this in more detail later on.

Since the timing is critical in the scanning portion of the
circuit. gate delays have to be taken into account. This is
done by providing a second dot clock signal which is
nominally 1800 out of phase with the first. This allows us to
use either of two clock signals which differ by about 31nsec.
This figure is just about right to compensate for the
additional delays incurred by the state length counters U3
U5 so that video timing information latched out of the state
ROMs will synchronize with video data retrieved from the
video RAM.

The actual state generator is made up of U3-U5, 2732
EPROMs U6 and U7. ROM address counters U8 and U9.

i·.

"

;-1'

,"

.M

'111

inverter Ule and hex D flip-flop UI0. At each state change,
the time of the next state is latched into counters U3-U5.
This time is measured in units of the dot clock period. At
the same time the outputs for this state are latched into
UlO. These signals are, in order, (DOl blanking for the
composite video, (OIl sync for same, (02) fast count enable
for the RAM address counters, (O3l and (D4) control signals
for bus access arbitration, and (D5) reset for the RAM
address counters.

The dot clock is divided by eight with counter U2 which
generates a byte clock signal. This signal, after inversion
with Ulf is used to load a new byte of information from the
video RAM into shift register Ull for subsequent output in
the composite video. This sequential process only occurs
when the display is not blanked. During blanking, the
blanking signal is fed back (after a little delay through U13a)
to U12a forcing the parallel load inputs of both the byte
clock and the L8165 shift register low. This effectively
prevents output from the byte clock from interfering with
the dot clock's advance of the RAM address pointers via
U14a and U12b. This fast advance of 80 counts occurs
between lines so that the next 80 bytes of information
fetched from the video RAM will correspond to the scan line
two lines from the previous one (full interlace display). We
go to all this trouble so that the screen memory addresses
are contiguous and relate one-to-one with the visible lines of
the display in spite of the fact that in each field only every
other line is actually being displayed.

After a byte is loaded into Ull by the byte clock, it is
shifted out at the dot clock rate during the display portion
of the line. Open collector hex inverter gates U15a, U15b
and U15c combine the output from the video signal, blanking
and sync to create a composite video signal at the base of
transistor Ql. This signal is amplified by Ql operating in an
emitter follower configuration. Resistors R5 and R6 provide
approximately a 75 ohm output for the video signal. Since
the risetimes of parts of the signal are quite short, this may
cause ringing in the video amplifier portion of some
monitors. This is seen as an extra bright band near the left
side of larger images and a higher brightness for individual
dots. Strangely enough, this effect is actually useful in some
types of display as it causes thin line images made up of
individual dots to merge together more smoothly than if it
were not present. Capacitor C2 bypasses the video output to
reduce the risetime and eliminate this effect if desired. A lot
depends on the individual monitor used so it should be tried
both ways to find the better setting.

Counters U16 and U17 provide the local RAM address
during periods of time when data is being scanned and
output to the video generator. Each time a new byte of data
is loaded from the video RAM into the shift register, the
address counters are incremented by 1 through U12b. At
the end of each line, pin 6 of U12b is held low by the
blanking signal and the output from U12b is controlled by
the input on pin 5. This input is the fast count signal
previously discussed.

Tri-state buffers U18 and U19 buffer the local RAM
address counters and drive the RAM address lines during

T"€ Comp~te' JOu'''d' 13

local access. Since the video output circuit doesn't need
access to the RAM during horizontal and vertical retrace,
these are the times we use to allow the processor to have
access to the video RAM from the S-100 bus. When the
outputs from the state ROMs cause both pin 1 and pin 2 of
U20a to be high, U18 and U19 are enabled and the RAM
address lines are driven by the local RAM address counters.
Pin 6 of U14b is just the opposite and the bus RAM address
latches U21 and U22 are turned off. When either one oi the
inputs to U20a goes low, the outputs switch and the video
RAM address lines are driven by the latches holding an
address written into them from the S-100 bus. In this state
the video RAM address read from or written to will be
determined by the S-100 system.

Since with two bits of information we can select one of
four states, you might wonder what the additional states
are. To explain this, let's assume the following: say that the
RAM is being accessed from the bus and a write cycle has
just begun. At this moment, a state change occurs and
either pin 10 or pin 12 of Ull goes high. Acting through
U13b this will generate a wait state on the 8-100 RDY line
since pin 13 of U14c will also be high, indicating that the
board is currently selected. If the processor enters a wait
state before finishing the write cycle it will leave pWR*
active during the entire wait state. If we allow pWR* to
remain active at the RAM chips and switch to the local
address counter for the scan line, a spurious write will occur
on all RAM chips selected during that scan line. If we go to
another state with pin 10 low and pin 12 high on Ull, we
maintain the wait state but in addition disconnect pWR*
from the RAM chips via U12c, U20b and U13c. Once pWR*
is disconnected from the RAM we can go ahead and let the
local address counters select the RAM address.

At the end of this scan line we perform the inverse
operation. First we switch back over to the bus RAM
address latches, and only then do we re-enable pWR*
remove the wait state and allow the processor to continuf
its write cycle. This arbitration scheme effectively share~

the video RAM access time between the video scanning
circuitry and the bus access circuitry and prevents any hash
in the video display due to bus access during a scan line.

We don't have this problem during a processor read cycle
because it doesn't matter if the S-100 data-in lines contain
data from the RAM address currently being scanned and not
the address we will ultimatley read from. The actual read
operation will not complete until the desired RAM address
is back on the RAM address lines and the proper data is on
the data-in lines.

The bus access is performed in a pretty straightforward
manner. Exclusive NOR gates U25 and U26a and U26b act
as a comparator between the address on A2-A7 of the 8-100
bus and the values preset by switches S2-S7. If the address
matches and an I/O operation is selected by either sINP or
sOUT high, pin 8 of U14d will go high indicating board
select. If a scan line is currently in progress, a wait state
will occur until pin 12 of U14c goes low. In addition pWR*
will not be activated as discussed above. If the bus cycle is a
read operation. pDBIN will be active and pin 8 of U20c will

14 The (omputer Journal

+S
~r

If I '" ,
fo II' ,J. '3

't
LS/93 Tt:..(;p.

c..P: PL
1.0 -t' I'I

+5 --

13

lJ2..

IJ 0'1

Vlf

'------+-------------------------"'.r--------------------J

r--------+---=-l'f~
I,~

r-------+--~/:.:.I
US IS I ~-

,~ ,..", c.,..
t--~cr. L5 173 1t.

"0 PI "2 Pl

r-----------....------_-------,;;II~O~,;()""JO;;.........~--'..,"

r- --:l)_'..::e~_ _+--.::..J~."P
~C

t._D ·C1/ L.,
11 '".,.n. M~ c.P.. p~ /'Ill c.P..

CPa LSI'13 n:. cPo 1-51 ~ 3 1'C,,. p, , n ,. p, 'J. ,J
U3 IS" I '0 '1 Vtf IS" , 10 'l

, 10 1/ 13 ,.,. IS " 17 , '0 /I 13 I~ IS" I' 17
,"

'.
-..:

I 1) 11 19 11

Oi~
A7 A' A A.. An

2. 73:2

U7

Do 01

7 , S" <J. J 1 I .u 2l. 19 11

Do PI 01. bJ_I,,, _
~C.E

_I,

'"

..

~~/:';'I_":';.j~ f 7,t Roy

~ UISJ

J

A7As
o

A3".u

3 .,. .0 ~ /I /0 ., I 3 .,. S ,
f» •• .~ ..3 ... 4:!1 Q2. Q.l qo QI CiJ.. .3

1-
L~.3'l3 c;~ --.!.. CP LS 393cP

Mil Mil

1: -E:l.
~ -E: u.,

- -- - -
+S

NOTE: The ahove KhelDatlc: II pahUlhed for oar readen' perlOuaJ Vie. The aathor retaiDa all reaaJe riehtl to the dellp.

The Computee Journal 15

+s

lIo- -if-+-i----+.....,-+.....,----..
01 -_+_ ~_+__i----_+__i-+__+----+_.....

~.. --t--ir-.....--1----+--t-+--t----+--t-..
03 --+--if--+--lII~---+_.....,-+--+----+--+--+-
oor--t--;r--t---1----.....-t-+--t----+--t-+--+----.
or-+-+-+--+----il-+--+-+-----+--i~+_-+----I_...
D'--+---+-+--+-----+--+-..-.-f-----+--f--+--f-----+--+--f
b7-+--ir--+---1----+--t-+-......----+--+-+--+----+--+-+-....

. ILS 0.1.)...'
'-Tf----{;I 2. tao

+5

VII

2 P,

L 10

i'i 7

/pO II' .1.. CU
II 10 ., ,

l) ... D. ,,' "
13 l'f 17 IV

<>1l7
~
>U " " I.,. I~ (J.:J.3 ., 7 S" 3 2- ~

,
~ In.. Jf 1/ 13 J.S" 17

.:l..~K.

> ~~<

~ f- .lei;
13~1. ": 11

06 '0 L. S :::t 'f-If
~i;.

L.S~y.Jf

17C'S"e. Vlsf " '. "
~ ~~" ~~~~£ ~~.~'~.;;~ J~~~

:.

~ ,,~.r tr ~'" -LSo~ OE
, U I;z..{ 3' Jt • '0

DOIJ DOl 1)61. DoJ c»y. ~oS'00' 1»7 ore tiLl ca:l. DO br~ cr.tr ~ cr:n

lJ :Lo.l,a.
T I 1/

~.,. bS I, AS"
L.SOO

I) AU'VJ.7 I .1. 3 V1.g I :3- 3 '1 'tt"'. "', ,,1- rtn

~
~ ." ". 61 Ti All AI• r'.

+s...f 1J.1.'f~IJ L. ~ /3i e; LS /31 L.S1311

liS" /1.,. 1/03 /1.1 I" I'.. I' 11 lIS-I'''' 1'3 1/1 I" 11(> J' 17 I':&. 1"1'0

f A' .'0
1"'3 :2.1. "

16 The Computer Journal

,,,,,

,.......

,.,

"

"

,,~

,"
turn on the data input buffer U24. If the bus cycle is a write
and bus access is allowed, the board select will combine with
pWR* through U13c, U1Se and U15f to enable the data
output buffer U23. When this occurs, OE* to the RAM chips
is turned off to prevent conflicts between a RAM chip and
the data out buffer both driving the local data bus at the
same time. U15e and U1Sf provide some delay so that the
bus data out buffer holds its data valid until after WE* goes
false to the 6116's. In order to select the proper device to
write to, U29b is set up as an address decoder for AO-A1 of
the S-100 bus. Depending on which port number of the four
is selected. data will be written to the low byte bus address
latch, the high byte latch or the video RAM itself at a RAM
location determined by the most recent values written into
the bus address latches.

Decoders U27, U28 and U29a select one of the 19 6116
RAM chips for reading or writing on both scan lines and bus
accesses. U20d is used as an inverter so that U29a will
select RAM address values of 8000H and up.

Though details of the arbitration may sound complicated.
it is actually a pretty straightforward scheme. Figure 3
shows the state ROM outputs at the various places in a
typical scan line.

Something to keep in mind here is that you need not
totally understand the circuit in order to successfully build

I I

I
I I I Ls-

I
I

(/." I I
Q~ { { ,II '" { I I i

Q I ~ ~ #!. ¢ <P' ¢ {

GIL <P "'<P I<p' ¢ {

Gl3 .. { !~ . I .. ! ¢ ..
".. .. $i' I , ,I ~

, ..
Cl> " .. <P " " " ¢ I ..

Figure 3: State outputs during a typical scan line

it and use it. Some experience with wire-wrapping
prototypes is helpful. along with some patience since there
are quite a few connections to be made, particularly in the
video RAM portion of the board.

In the next part of this series I will describe how to build
and check out the board. and will also provide a program for
generating the state ROMs if you have access to an EPROM
programmer. We can also supply preprogrammed ROMs at
a nominal cost for those without such facilities. •

,Ii

ill

'II

'III

,11

'll

Multi-user
A Column by E.G. Brooner

I n previous columns we tried to avoid technicalities as
we outlined the general kinds of milti-user systems. With all
of that behind us, it's time to get a bit technical as we
describe a particular kind of network (Ethernet) and a
particular implementation known as "Etherseries," Very
briefly. Ethernet is one of the earliest and most widespread
types of network, originally meant for use with
sophisticated minicomputers, and Etherseries is the
particular version designed for use with the very popular
IBM PC.

In contrast to many advertised net systems, this one is
actually available as an off-the-shelf product and this
reviewer has seen it working. Bob Metcalfe. one of
Ethernet's inventors, founded the 3COM corporation to
build and market network components. In his California
plant we observed 50 PCs all working away at the tasks
typically performed by desktop computers. all sharing one
large hard disk storage system and a few strategically
located printers. Figure 1 illustrates, in a simple way. how
several computers are connected to form a typical network

What's Different About Ethernet?
Designers attempt to define networks within the

framework of a seven-level protocol system; this sometimes
leads to more confusion than clarification. Briefly, a protocol
is a set of specifications for performing a certain function. If
you connect a peripheral (printer etc.l to your computer, you
use a certain standard method - RS232 for example. This is
a "level-one" protocol, which is a definition of how two
pieces of equipment communicate with one another. The
way the data is bunched together for transmission to the
printer constitutes a "level-two" protocol, of which there are
many kinds. These two protocols, whatever they may be,

A
Network Cable

>....

i(EIJ~' !J=~~\W~~
j

"SERVER" rEl~l
I sa

see Fig. 2 i '. \'~I ;')

Figure 1

constitute a complete data exchange system.
So much for communicating between two devices. Now, if

we want to connect a larger number of devices, and
selectively communicate with one or the other at various
times, we need a third protocol to route and control the
communication process. Three protocols define a network.
The third protocol (again, whatever set of rules is used for
the purpose) is what distinguishes a network from simpler
systems.

Ethernet is really a definition of the two lower protocols.
It defines them so clearly that any equipment connected via
an Ethernet can (theoretically. at least) communicate.
However. the third, or network control layer will differ as
we move from one machine to another. And the level one
and two protocols. which define Ethernet. are more-or-less
lumped together. For example. we cannot say that it uses
some particular standard or otherwise defined protocol at
each level. Ethernet is a communication system that
performs. in an integrated way. the functions that would
otherwise require two separate protocols.

There are a lot of Ethernets (the generic term) for use
with various kinds of computers. Etherseries as presently
defined is only for the IBM PC. (3COM'S literature also calls
the PC version Etherlinkl. A very similar Etherseries
package would suffice for Apples or some other micros. but
it would not be identical at the third level. The third level,
then, is usually unique to a particular machine or operating
system; it is a special, customized interface, usuall:
combining hardware and software components. Etherserie>
for the PC consists of a single plug-in board and a 5
diskette and, of course. the interconnecting cable. An
important point to remember is that to the user. thi>
network appears simply as an enhancement to PCDOS. in
the form of a few new commands.

How It Works.
All Ethernets have in common the CSMA/CD (carrier.

sensing. multiple access. collision detection) scheme for
"directing traffic" on the single coaxial cable that links all of
the users. CSMA/CD is one of the two major schemes that
are in use for this purpose (the other major method and the
many lesser ideas for accomplishing the same thing will be
discussed in future issues\. When a user attempts to
communicate with another device. his network software
composes a "message" which includes both the data and the
routing instructions. The message may be so long that it has
to be broken into several smaller "packets" that will be
reassembled at the receiving end of the circuit. All of this is
done automatically; the user only enter!! simple commands.
such as would be used with one of his own peripherals.

18 The Computer Journal

Assume that a message is ready to go. The net

eommunication system is always "listening" to the cable. If
it has not heard any signals (data) being passed for the last
nine microseconds, it goes ahead and transmits the message
or packet. While transmitting (remember, at something like
10 megabits per second), it continues to listen. If what it
hears does not exactly match what it is sending, it assumes
that either: a) an error has been made in transmission. or
bl someone else has tried to transmit at the same time. In
any event, it has detected a "collision" on the cable. By
means of a rather complicated formula, known as the back
off algorithm, it calculates a brief waiting period and tries
again. The back-off algorithm operates in such a way, and
the transmissions are so rapid, that if two messages do
collide on the first try, their next attempts will probably not
coincide, and both will succeed.

Every station on the cable "hears" every transmission,
but ignores those not addressed to it. This is typical of most
networks; the undesired messages simply go on by without
interrupting normal operation of the other users. In fact, a
user has no way of knowing whether messages are flitting
along the cable or not, unless one is addressed directly to his
equipment. Even if it is, the interruption is very brief;
network communication transactions typically take only
fractions of a second.

As It Is Really Used
As many as 1000 PCs could conceivably be connected

together, exchanging data and messages and sharing
peripherals; but let's be reasonable and stick to the 50 that
3COM was using when I visited their headquarters in
Mountain View, CA. First of all, each of the 50 PCs could,
and usually did, operate just as if it were the only one in the
building. Each had one or two floppys installed and some
had printers attached; some were doing engineering work,
some were for bookkeeping, and so on. At this point there
was no obvious difference between this installation and any
other large group of personal computers, except for the
coaxial cable running unobtrusively past the rear of each
machine.

But somewhere in the system there was a "disk
server" -Ethershare is the trademarked name for 3COM's;
almost every network has something similar. Ethershare is
itself a computer complete with a keyboard, screen, gobs of
memory, and a 40 megabyte hard disk. The hard disk is
accessible in "chunks," each containing about the same
amount of storage as a double density floppy. Figure 2 is a
schematic representation of a typical server.

These subdivisions of the disk are known as "volumes."
Some are accessible to one user, some to another, and some
are available to anyone wishing to read them. The public
volumes are the key to many of the net's features. One or
more may be a common data base, or contain commonly used
software. available to everyone. One or more may be used as
a repository for "electronic mail" which is really a set of
electronic in-baskets and out-baskets where memos can be
exchanged. The others may be assigned to individual users
and can be password-protected.

lA, Network Cable

<~,,' '" "- , , "
N

r---- ----------- -----,
II

I Interface Terminal I
I I
I I
I I
I I
I c.P.U. Memory

I
I

I
I

I Printer
,

I
Hard Driver ~i

I Disk To I

I Printers
'----------- --------- J

Figure 2

Say that a user has his own floppys, designated"A" and
"B," He can also have two volumes on the server, designated
"C" and "D," To access one of the extra storage units, he
enters a simple LINK command that names the volume and
equates it with "C," From that point on, until he
"UNLINKs" it, he is accessing that volume. via the network.
just as if it were a third drive on his own PC.

Ethershare also controls a pair of printers. Everything
sent to one of the printers, from any location, is first
"spooled" and then printed when the printer is free. Of
course, this also frees the user to do other work after
sending a print command. (See the description of print
spooling which appeared in recent issues of The Computer
Journal)

When we reviewed the operation of this particular
installation it was new and the users were still in the
process of adapting themselves to it. The electronic mail
feature was the one which seemed to most impress those to
whom it was available. The mail program included a fairly
competent word-processing capability. With it a user can
compose a note or letter, edit it as with any other word
processor, then deposit it in one of the mail files which is
accessible to the addressee. Such "mail" can be sent to any
station or individual within the bounds of the network, or to
a group of addressees. The mail can be accessed on-screen
by the addressee anytime after it has been "sent," After
that, it can be printed and/or destroyed. All messages are
date and time stamped and listed on a directory. This
system should be more practical than hand written memos,
and it is certainly more convenient to use.

Evaluation
Etherseries for the IBM PC is an available product and

not just someone's hope for the future. It is typical in many
ways of any other Ethernet. and bears some resemblance to

,.JIi

'Ill

• >tit

The Computer Journa' 19

Add 5150 sr'pplng on al: U S orders VISA or MASTERCARD oreers aCCeolec

T'adernarl< at Apple COi!lOv!€r ie

-m- INTERACTIVE MICROWARE, INC.•WI P.O. Box 139. Dept. 226. State College. PA 16804
CALL (814) 238-8294 for IMMEDIATE ACTION

.. --_ _- _ ..O'---_._--

VIOICHART - Proven tool for lab data management
Fast plots of 4 data sets with scrollmg In 4 directions
zoom scaling on X and Y axes 2 types of grapn,c
cursors and on·screen STATUS REPORT even plots
A. 0 Input while sampling ADD SUBTRACT MULTI·
PLY DIVIDE INTEGRATE, DIFFERENTIATE, AVER·
AGE or NORMALIZE data sets with SIMPLE COM·
MANOS Ideal for spectra, chromatograms, rate curves,
etc Includes SAMPLE OAT A on disk with 28·page
manual $75 L..-

SC""",,, "LOITER - 0"" '''''''00'''''''9 I1: : ~~.: Igrapns of your data You choose data format, lengt e and 'AI'
position of axes, 20 symbols error bars, labels any· ~
where In 4 orientations Includes 5 demos on diSk plus j i:
30·page manual $25 1 i '
(For DIF file and Houston Instrument or H·P 7470A • :.....: _.--,-J
ploner adaptations, add $25 for each option selected I

CURVE FITTER - Select the best curve to fit your data [!:d',
Scale, transform, average smooth Interpolate (3 :::: .
types) LEAST SQUARES fit 13 typesl Evaluate un· ~. .'
knowns from fitted curve Includes 5 demos on diSk with . ,.'
33·page manual $35 _'. .•• '. ;""~. . .
SPECIAL: VIDICHART. SCIENTIFIC PLOTTER -
CURVE FinER on 1 disk $120

STRIPCHARTER - Turns your APPLE and Epson MX
series pnnter Into an economlCal4·pen chari recorder
Prints and displays continuous 1 to 4·channel strip'
chans of any length Ideal for large data sets Numerous
user·selectable graphiCS optIOns enhance output qual·
Ity Includes5demoson dlskwlth37·page manual $100

Acknowledgement
An acknowledgement which should have

been included in Volume II, Number 2 of
The Computer Journal was inadvertently
omitted. The article "Controlling DC Motors
with a Microcomputer" by N. Bungard was in
part made possible by research funded by
National Science Foundation grant MCS
8210194.

almost any of its many competitors. As far as price is
concerned, it is neither the lowest nor the highest priced
system available; at $950 per station, along with the
relatively high initial cost of the PC, (and the server) it is
probably out of the price range of all but the most serious
micro users.

Its performance is superior to many competing products;
the mail feature in particular is slicker than some others we
reviewed. 3COM is a leader in the Ethernet business and a
3COM product, associated with an IBM product is sure to be
dependable and supportable. If it is within your price range,
you could do much worse than tie a bunch of IBM PCs
together with this network. •
For further mformatlon. set' your IBM PC dealer. or contact 3CO.\/ Corporation. 1390
ShnTt'btrd Way. M'ounttan "'leLL'. CA. 9.. 04.1

Computer Nostalgia:
Who Invented the Personal Computer?

One of the present manufacturers likes to advertise that
they invented the personal computer; I think 1978 is the
year this supposedly happened. True? Absolutely not. In
1978 Apple was just beginning to be heard of; the Radio
Shack model 1 was selling well, and the Commodore Pet,
though less agressively marketed, had been around longer
than either and was (in many opinions) a better machine.

Before any of those "personal computers" were even a
gleam in their designer's eye, there were a large number of
what were then called "hobby computers." The hobby
computers were usually available optionally as kits or
assembled products. The best known of these were the
Imsai and Altair. And before the commercially available
hobby computers, there were the real pioneers, individuals
and groups building essentially the same thing strictly from
scratch. These were the people who really "invented the
personal computer,"

The leader of that movement was Dr. Johnathon Titus of
Blacksburg, VA. The 8008 (the first 8-bit microprocessor
chip) came out in 1972. It was designed basically for control
applications, but Dr. Titus, who was then doing scientific
work with minicomputers, thought it had potential as the

basis of a homemade personal machine.
In 1972 he managed to obtain some 8008 chips (then $120

each) and designed and built the first so-called "Mark-8"
microcomputer. According to Titus, this first micro had 750
bytes (that's less than 1K) of memory! A refined, printed
circuit version was written up in Radio Electronics
magazine in 1974, and this marked the beginning of the
movement toward hobby (or personal) computers. User
groups all over the country, but primarily in southern
California, built and used Mark-8 microcomputers. And in
what was later to be known as "Silicon Valley" one of the
earliest computer clubs, known as the Homebrew Club, saw
hobbyists and professional engineers pooling their
knowledge to develop even more "hobby computers," As
someone said at the time, "These guys build computers in
their garages and become millionaires,"

By late 1974 the 8080 chip, successor to the cruder 8008,
had dropped to $200 each. MITS (a now extinct company)
built a kit computer around the 8080 and what is now known
as the S·l00 or IEEE-696 bus. They were swamped with
orders before 1975 got under way. MITS' Altair was closely
followed by improved look-alikes such as the (now also
extinct) IMSAI and several others.

Who invented the personal computer? It certainly wasn't
Apple, or even Tandy or Commodore and it happened long
before 1978. by E.G. Brooner •

... ~"" .. '" "'" '!I'" ~ .-- "'ll "'-

'" " 'ir" r, r-' r-' r-'' "'! f' !r '" ~ ~ ~ "- ,-,- - '

- -. ria \.;omputarist's Calar.UClI

MAY 07CO
SUN MON TUES WED THURS FRI SAT

1 2 3 4 5

6 7 8 9 A B C

0 E F 10 11 12 13

14 15 16 17 18 19 1A

18 1C 10 1E 1F

SYSTEM INTEGRATION
Part Two: Disk Controllers and CP/M 2.2 System Generation
by Bill Kibler

Disc Controllers
In part one of this series I pointed out that a system could

be built with used parts for less than $1000. With this in
mind, I will try to show why buying a new disk controller
instead of a used one might be advisable. If you go to swap
meets, you will find many of the same type of disk
controllers for sale - mainly the CCS 2422. I have
considerable experience with this card, and I feel that it is
not a good buy. The documentation is good, but the unit's
ability to interface (hardware) with other types of CPUs and
memory is rather poor. The CCS 2422 is not IEEE-696 (S
100) compatible and was designed for their own cards only.
These cards abound at swap meets because their owners
have been unable to make them work satisfactorily.

Most CPUs, memory, and va ports, will work with each
other, and if not compatible can usually be altered. Timing
problems with va ports are rare, and memory is cheaper to
replace than to modify. Disk controllers are another matter,
however since their timing is quite critical. The VLS
controllers used in the newer units are either NEC upd765
or WD 179x. Both of these have a lot of special features,
some good and some bad. Common to both is the need to
read the data as fast as the chip provides it. The CPU's
memory fetch and write cycles must be faster than the
controller's read or write times in order to clear the
controller's data buffer and be ready for the next byte of
data. When the timing is not correct, the unit will error and
stop the data transfer. Software has advanced somewhat
since the units were first made and buying a used card with
no hope of upgrading is not desirable. CP/M 3.0 uses
multiple banks, and consequently disk cards that are
memory mapped may not work under banked operation.
Some manufacturers are supplying new BIOSs and possible
upgrades; these are always preferred but seldom seen at
discount prices. The cost of a system without a controller is
$300 to $400, and adding a new controller for $400 (with
software) will still keep the system price under $1000. This
new unit will be IEEE-696 compatible and therefore will
work without hardware modifications. The software will be
current, possibly even CP/M plus, and the utilities will aid in
bringing it up. These are the premises under which I bought
the the SDSystem's Versa Floppy IIi696 and CP/M 3.0.
However, much of what I will review is also applicable to
buying used controllers or upgrading existing systems.

System Configuration
My system consists of the Computime CPU. SD's VFII.

and SD's Econoram II (a 256 K banked memory). Although
this is not an ideal system, it will help to illustrate the ease
and the problems of system integration. The first step in

any integration is understanding the individual components,
their memory map, and any special problems to be handled.

The CPU is a Z80 with a serial and parallel port. The boot
jump PROM or monitor will be on this card along with the
serial and parallel ports. The SD memory is 256K, \irith one
bank of 64K and four banks of 48K. One port is used to
switch the banks on the memory card, port FF hex. The disk
controller uses a WD 1795 and six port addresses; those
switchable ports are 60 through 67 hex. The software
purchased with the unit is CP/M 3.0 for their SBC-300. The
sale price, including CP/M + was just under $400 (CP,M for
$90!) and thus falls into our under $1000 system cost.
Keeping in mind the important points covered in part one,
let's see how these units rate.
a' Documentation: Computime is better than SDSystems.
bl Hardware: generally good design (both IEEE/6961.
cl Software: SD's needs more and better documentation.
dl Adaptability: hardware ok, software needs help.
el Support: both ok, SD needs better follow-through.
II Repairability: no PROMS or PALS.
From the above quick guide, you can see that some plusses
and minuses do exist. Let's review three of these points in
more detail.

Documentation
Computime produces a rather complete manual on their

CPU, and SDSystems could learn something by looking at it.
Although I would not consider the CPU manual to be the
best, it does cover the topics completely enough to make
bringing up the unit fairly easy and straightforward. SD's
manuals are quite brief and do not include a theory of
operations. There is a section called "Functional
Description" which replaces theory with an overview that
hides all important facts from the user. This manual should
be read carefully both for errors and for oversimplification
of explanations. A case in point is the section called "Port
Usage Data"; not mentioned is the fact that some entries
must be complimented first (drive select). The drive select
data has one line's data already complimented (bit 6, the
single/double density flag), showing how confusing
inadequate explanations can be even for the writers of the
manual.

The listing provided for the controller is only part of the
monitor and will not work as printed. SD has their own
operating system (COSMOS) and the DDBIOS listing has
routines for it. The disk select routines will fail if used as
written. This error was discovered when I mistyped the
program and the routines worked. I later discovered the
typo, corrected it and found the monitor would not work.
The next major problem is the lack of information on how

22 The Computer Journai

the system was intended to interface with other

components, both theirs and others. Normally, a theory of
operation would describe in detail the various handshake
operations, the this-before-that stuff, and would help the
software hacker to write his own programs. SD must
consider all information to be trade secrets, as they provide
little insight into the inner workings of their cards.

Software
SDSystem's implementation of CP/M 3.0 does not have

much competition to compare it with, and therefore it is

hard to know how good or bad it really is. It appears that
some work has gone into setting it up, but a considerable
number of programs were not included when I first started
on this project. SD was not supplying the full CP/M BDOSs;
you got either the banked or nonbanked version, but not
both. After three months of fighting, and a talk with the VP
of Sales, they should now be supplying all the original
Digital Research files. For the integrator this leaves only
the how and why of their disk controller's timing in
question. A new DDBIOS is available (they are aware of the
many errors in the printed DDBIOS) but I have yet to
receive mine. This condition is to be expected, and a lot of
playing around will be needed to find the right software
handshakes for your system.

Support and Hardware
The Versa Floppy II is the only card that I have been able

to bring up without a lot of cutting and hacking. I feel that
in terms of hardware, the product is quite sound and should
give a lot of trouble-free service. The design is rather
straightforward and, except for not having a PROM on
board, I have not been able to find anything to complain
about. The factory support has been about as expected, with
one surprise; the support person is still there after six
months. The company appears to be serious in wanting to
produce a good product and improve their image, but as yet
they haven't achieved that goal. They welcome constructive
comments and will change their policy if a strong enough
case is presented.

Making It Work
Now that we have some idea of the product and the

support, let's look at what it takes to make it work. In
considering how to set up the system, I toiled long over the
final memory map, much as you should before starting. To
make this work for most people, the system will have to
come up in stages, first a monitor, then CP/M 2.2, CP/M 3.0
non-banked, and lastly CP/M 3.0 banked. Another
consideration is the use of existing 2.2 systems, both SD and
others. Most systems are port addressed disk controllers
with some form of boot/monitor PROM (either mapped or
phantom). The SD system was designed with a monitor at
E800hex, and disk PROM at FOOOhex. Through banked
switching, the loss of the memory space was minimized, but
for most users this will not be an acceptable solution. The
entry points to both the monitor and disk functions,
however, were the FOOOhex entries. In my design, a fixed

2K EPROM resides at FOOOhex that provides both monitor
and disk functions. I feel that this is fairly close to what
most users will have. This design also leaves the memory
open above the PROM for non-banked buffers. disk byte
storage tables, SCBs, RAMdrives, or whatever. The BIOS
also becomes quite short by making calls to the PROM for
disk I/O. CON va, and initialization. My personal preference
is to boot from a monitor after I know the basic system is
running rather than to wonder why the disk keeps on
running without anything happening. Checking the memory
map listing will indicate options and give comparisons to
other systems.

CP/M 2.2
Assuming that you are bringing your system up from

scratch, you will have to burn a PROM for FOOOhex. This
PROM should contain a monitor and the disk routines found
in DDBIOS. Listing 1 contains the needed changes to make
it run. Those routines dealing with the FORMAT portion
will not fit if you include a monitor. They can be included in
a separate new format program or in the PROM if an auto
boot operation is intended. I have made a separate format
program because of the monitor and because I have changed
the disk parameters, the number of drives and the layout.
As the user of the system, you must at this point make some
decisions as to the final operation of the system. Now is the
time to determine the number of drives, the number of
formats to be used, the types of I/O, and any other special
functions you may desire. To make it easier to get the 2.2
software up and running, I have chosen to include only
information for 8" single density disk drives. For
transferring information and working between other
systems, this is the preferred format. Larger densities
require disk buffers and deblocking algorithms to combine
CP/M's 128 byte sectors with the disk's actual physical
sector sizes. The use of the non-standard 128 byte double
density sector saves this blocking problem and is what SD
used at first (users could still implement this format if
needed in 2.2; 3.0 does the deblocking internallyl. The
DDBIOS listing is somewhat mixed up when it comes to
double density and will not work correctly as listed in the
manual. For an easy way out. SIGIM has a ready BIOS on
their disk #26. complete with a format program. The
software listings provided here show how short a BIOS can
be when using PROM based functions, and what is needed if
only the listings from a manual are used. I recommend The
Programmer's CP/M Handbook by Andy Johnson-Laird for
more in-depth discussions on CP/M 2.2's inner workings.

For people bringing up other systems, the source code
needed for the monitor is usually found in the disk controller
manual, either in a monitor or as a separate BIOS program.
The major advantage of bringing the unit up under CPIM 2.2

is the readily available support currently at hand. I obtained
the original 2.2 BIOS from a fellow club member. This BIOS,
with some modifications. was up and running in 30 minutes.
This made me sure my system worked and gave me a
system with which to write the BIOS for CP/M 3.0. Let's
now look more closely at the necessary steps in bringing up

I~

,,,jj

,.<

,AI

,<I

CP/M 2.2.
Step 1: List all ports and memory locations that will be
used by the various cards. In CP/M 3.0 these are listed in
PORTS. LIB. Starting a list now will make things easier
later. I chose to put my disk buffers and storage locations
above the PROM so that they would be protected during
bank moves. When listing ports or memory locations, it
helps to show what happens when accessing these entries.
Note what bits contain information and how it is used.
Remember that these ports/memory locations must be the
same as those used in the monitor (the listings addresses are
the same as DDBIOS and not above the PROM as I had
suggested).
Step 2: Photocopy the listings needed for each port
function. Typically these are the CON IN/OUT routines that
are found in the manuals. Past experience has shown that it
is best to just steal the routines word for word from the
manuals. It is not unusual that the mention of timing
problems which require special software never find their
way to the books. So steal them all. Using the copies will be
faster than trying to find them again in one of the many
manuals, and also allows you to make lots of notes on the
listings.
Step 3: Create the monitor program. composed of the new
(stolen) 110 routines, system initialization routines (also
stolen), disk functions (yes - stolen), and monitor functions
(try stealing them from SIG/M disk #26). My monitor
routines were originally from a CCS Z80 monitor that I
converted to 8080 nemonics. Using Wordstar to block delete
the old disk routines and add the new ones will speed up the
operation (if the monitor is for another systeml. It is
strongly recommended that you make small files of the
routines for block adds later as these can then be turned
into macros for CP/M 3.0.
Step 4: Assemble and burn the new monitor PROM. Test it
to see that all functions and routines work, as CP/M will be
calling these later. What you should have is a PROM at
FOOOhex to F7FFhex with a jump table at FOOOhex similar
to CP/M's BIOS entry table. This will make it easier to call
routines, especially if you later add or delete a byte or two
(the tables entry points become fixed at this time).
Step 5: Compile the new BIOS for CP/M 2.2. What will be
needed are the Disk Parameter tables, any routines not in
the monitor, or those that may change often. My BIOS has
several of the routines which are a simple call to the PROM
entry table, and a return out of it. About 600hex should be
more than adequate for this type of BIOS. The CP/M
systems or interface guide will list the needed routines. See
the sample BIOS for more insight.
Step 6: Assemble your new BIOS, correct errors found in
the assembly, and add it to a CPM60K.com file. This file is
generated by "MOVCPM 60K.... or SYSGEN and doing a
"SAVE 36 CPM60K.COM," when prompted to write to ?
drive or reboot. This is covered in more detail in the
SYSGEN manual. Use DDT to add the BIOS at IF80hex (1

like to fill IF80 to 2500 with 00 so that dumping the memory
will show if the addition is correct or notl. Use
"IBIOS.HEX,"cr,"R3580,"cr, then "D1F80,"cr to see if the

jump table is where it is supposed to be. The "R3580" is the
offset needed to load a hex file at IF80 when it was intended
to go at EAOOhex.
Step 7: Save the file by "GO," then "SAVE 36
NEWCPM.COM,"cr. Use SYSGEN next and skip the "load
from drive?" by hitting the return key. Write the new
system to a spare disk, and then reset the system and try it.
If, like myself, you are upgrading, then this testing will
involve removing the old disk controller card, doing some
jumper changes, a PROM change, installing the new
controller, and then trying the new disk. If a second system
can be borrowed for this initial start up, a lot of frustration
can be saved. Do not be surprised if it does not work the
first or second time. There are normally a number of typos
that will need to be corrected first.
Step 8: After booting the system successfully, make lots of
backups and then test it fully in all modes and ways to check
for more errors. Assemble the format program and generate
new disks.

For installing the new BIOS without an existing system,
there are some alternatives. It is possible to generate a
running system from a monitor (assuming a complete CP/M
already existed for the system with only incorrect 110 codes)
if the PROM can be programmed elsewhere. Some systems
have the PROM/monitor on the controller along with a serial
port, thus allowing them to be brought up initially from disk
(the Micromation Doubler is just such a controller), Most
companies have their PROMs and monitors set for their own
I/O. These will need to be changed for mixed systems. To
make these changes, a running monitor is needed that can
do memory changes, dumps, and disk reads/writes. It may
be necessary to buy such a PROM from a local dealer or
fellow club member, but the cost will be low in comparison
to buying all matching equipment. To change the 110, just
read in the system with the disk read function, change the
I/O port addresses (must be the same length or shorter, and
will have to be converted to machine language) and then
rewrite to a new disk. Change the disk and try booting the
system. Normally it will not work the first time, but keep
trying; it will work if you have stolen all the right code.

This multiple-step method of system generation should
get you up and running. Keep in mind that you will
encounter plenty of obstacles, but knowing that they will
appear and can be overcome should keep the frustration
level low. Hopefully I have shed some light on what is
needed.

Review
In this installment, I have provided some insight into the

SDSystems Versa Floppy II controller, listed some things to
watch for, and reviewed CPM 2.2 system generation. In the
next article I will list the changes from 2.2 to 3.0 and help
you generate a new non-banked BIOS.

The listings for this article are found on pages 2-4 and 25.

;'t

24 Tne (o"iputer JOurnal

In ~HC"Y~ cr CI~.'lf" tQ b .. :.-.... ::
:.r·J" :· ... IT

...
,j

HII

'!!l

.,j

,"

'.

.M

'.;r.OM COLO S'U." 1.OAOtR.
: rlOM "o\1U't lOOT,
:CIf!Ca COMSOLl "I ITATl.'S.
: alo\o cotlsoJ.,r e"A.ACTf".
;.RITt CO"'OLl CIIA.Ac-rtIL
;WRIT1. 1. 1ST INC CM .. tt.
;wIll.1T! 'UNCH C"Att.
; .rAO .IAO,.. C NA.,
:IIOV! olSa TO TltACIt ItRe.
:StL!CT DISl DRtVt.
;.ttlt TO TUCl I ••rc A,
:StT 'ICTOIl: WO"I1.R.
; ItT OISl ITARUNG "0".
; IrAO SELECTED ItCTC••
; wIITr "LECTro ,rCTOR,
: LlST ITATl'S CHEca
: srCTOI 1'''1I5L''TI: -al'TIN£

:C:J1SI(
; IOBYTr

;CfT DISK NI'MBER TO
;P"SS TO CCP If\; C.
;J'-'MP TO cep.

;SlT L" JL'M';;.
:Cl.FI'It COHS:;;t.r ;;TI\TI'S,
; ,RINT OP[~::"''; Mfs.:..,,:;r.

:5('T 5T"Ck 'OINTER.

,
•
)

"S£Tl'P
CONDT~

Iot.OMSG
"'SO

•
e ,A

CP"'B

l.XI SP,IOH

IRA
ST,,..,..
CA:"L
1_
LXI
CA.LL.

l..DA...,,,
JMP

1.' all 1nlt.ll1at.l"r. 1.8 "ot. do". 1.0 "Ol'".ltor
enter cod. here

lOOT:

GOCP,", ;

JM' 800T
WIOOTE: JM' "lOOT

JM' CONST
JM' CONIN
JM, CONOT

JM' t.lST
JM' 'U.CH
JM' .rAOlR
JM' 1III0Mrl
JM~ TOlltSL

SET'TJlK: Jill' 5D'''01++1£N
SETS£C: JM, IC'.0".21N

Jill' SC'IO".24N
JM' IO,JQlit<t2711
3M' SQ,JOIt.2A"
JM' 'RSTAT
JM' StCTRAM

lOOT
Thi1 i. th. firlt ent.ry .nt.red fro__oaltor

aftlr r.,.t. and after .y,telll 11 loac;ied tr">'"
ay.te'1l trilc" (p." 0 and 1)

aRC lIaS ; s,.".T or IIOS,
entry loc.tlon. for bl0'
.t..Dd.rd 2.2 .nt.ry)wapa

..
J20400
320)00

3.22"00
(096£"
OB4 r
211C[b
crn IF'S
3A0-400.,
C HODC

DP.
dUI pereut.r h••d.r. 'cr til. dill drive.

["3) · OP8AS! : IQL' S : I"St or OUIt 'AIAMtT!1 11..OCttS
IAJ 3 62["0000 O,EO: D. XJ.,TO,OOOON :TIUNS1..AT[T"IL'
'.A)7 00000000 D. 0000",0000" ;SClATCIt AR'A
[A)8 6Cf.8r,)!AOb D. Dlltll",D.IO ; DIll! Il"". PJI.!JI.M ILOC"

D• CSVO. ALVO
r".. 3 62'AOOOO DP£l: D. U.TO,OOOOH : T.ANS"AT! TAI:"f
,,,~ '1 00000000 D. OOOOH.OOOOH : SCTCH "IrA
r,UB ,crbr,)£" D. OU.lt'r,O'IO ; OIl It'rr,M 11.0eK
F ... ,.F')"'ClifC 0_ Csvl, .\1.\11 ;CItECIt, AL~ yEC10RS

r,,") · OPtlO; lOt' S ; SO CISl PI'JlM eJ..OCk
u,"J 11\00 o. H ; SEC ... TR"CII.
r .. c, .. 01 D8 3 :ILOCIt SHIrT
fAC,6 07 08 7 : Il.OCIt ""..
r .. ~ 7 00 08 0 ; lxTNTASl
r,,~il f' 200 DO 2~2 ; DlSa 511[-1
f "~,, 3roo 0_ '3 ;DI.rCTOIY """I'~C CO 08 1'2 ; AI,. l.OC°
£I\o:.;-J 00 08 0 :ALLOC1
r"c,f I \JOO 0_ I' ;Cl!irca SIU
f'''I.~ 0200 0_ 2 :OF'S~T

t: .. 6,i · X~TO : r0 1' S : TR"IIS1."T! TA,.:"£
fU-'4 010700]):1 08 1,7,1 3,19. 2~,",11, 11, 23
""J>!; O)OClOfl"~.;1 08), 9.1 r" 21.2,1,1-4, 20,26
fAH 060C121i04 08 6,12,1',2., ~, 10,16,22

["00

EA7C 318000

rAoo C]7Cr. ...

£"0) C)OJlA
'A04 C10'\[8
[1'0' c30'te
""OC C10D[8
[Aor C3~Ctb

[A12 CJ'2t8
rAJ ~ C36JE8
EA1' clct,."
rAll C)lfltA
rA1F. CHino
£"21 c321ro
£A24 c324FO
'A27 C)27r0
£"2A C)2A"0
£A2n CHOftl
£0\)0 C3Utb

CP/M).0
non-b.n".d

'rrrF
see' •

buffera
-FS 00
",on1 tor
'rooo

BIOS

'r"o 0
BOOS

'CltQD

T"

SOSyatelll1
b.r,lo.ed

'rrrr
sell" •

'rroo
'F8C 0
IlIonlt"r
'rooo

r •• ld.enl
IUDS

'[ADO
r •• ldent
800S

'[400
TP,

PRO",
b ••• d .yet • .,
'r rrF 'rrrr

pro'" buffer.
JIIonl':'Jf .""-DRVS
'f (l00 'f' 00

8 lOS Mon 1 tl')r
'''200 -rooo

a005 lIDS
'F400 'rll.oo

CC P ,800S
'DCOO 'oeoo
TP" CCP

'0400

TP'

",'MORy ",",p ANn PORT l'S"Gf TAIL"

lur the srJ$i5':f:>"5 ":-'~:L.': !iJi-'r-:~"'~ ~-. tr,t'

"'c!,.Jd~ t"" d:t-i~ ,,~~l I'",f"p~ ="'dl'".,:''''\' :. 1"

!I.J<J'~l!9te~ ",,,,.::: ~ ";l!''' '_' ,'t~a~",,,,,

.. :.:: <ilV'"' y8J t~l! ~~ffl'r""r,· "l;"~ ,J;:f"dOJ

'cooo COOO
INI(INI(

o 1
bnk TP"
BIOS

Ind
anos

'Oloe 'J1JO 'OlJO '0100 '0100 '0100
CP/M ::PrM CP/M CP/M CP/"1 CPt"
pgJ pgC pgO pqu pgO pgO

---------- .. ------------ .J,.ble TP" ----- .. ---_ ------ ... ---------.
c.I,. c.~ ~"ti ~f.lJ(~"l< o:.llIy 0:.01(

• :-.ot~ the TP,I., of '" b.nll,pC CP/M J. 0 ,J'J,.ng lIt.ndar(,\ BIOS (non"'roltl)
1.. t Yp1.ca ~ 1 y "ot;..

ST...... ;J"A:~,
non-pr·.)r~ ''1ltlP'"
·f Ft", • r rrr
nor;m.l ell, tendea

BIOS bI0::
-r400 'f 200

t!DOS BOOS
-r ~ 00 • r c00
cep cc p

'oroo '0':00
TP" TPA

p,:, ~ ~ TA tlLf'
b""1(o~F h : ban)!, sWlte'" port 0'. S:J fconnr.'"

DiSk contr':lller po rt,
~SrT f'~' O"Or, : controller re.et addr •• ,
:; f':..r:-;: .' u"3' : dr ive .elect pon
ST~T:'5 : <. i) " .. ~, : 1!I tat JlI recJd p~rt

T RAe" f;" 00'1""'. : t raclt port
S FCTCJ<. 1',;;.,1 °"''''r-, ; .ector port
O~:,l, ; F.I' 0""/1 ; ,ja ~ a ~n/o Jt p:lrl
:'''l:! ~' - , 0" 4 ~ ; COl"lman,J wr 1 le pon
ROCI':: c-:::: ~,~ : read .djr.lOs co"' ... d!'1,J

R:>C"": '. e ~ ,,~. : reao !.ct ur comroo<ln\.l
101 RC"':' r:l C,,?r-, : wr1 p

.• se:-t or cOII',"'i!Ind
Ioi RTC : , ;;,; Of 4,": ;"'-:l':fI' t rae .. ct)l""rran-::

Comj:: Jt 1"'. (Pi P':lrts
TJ; r'.... < o2 ~ t, ; tll'P'er '0
T:: r:;" C.;1 ~'" : t 1"' .. r 11
T 4:: f,:,l O:U' : t 1."'.r IJ
TeT:.. '.' In;>~, ; t 1.rooer cant ral port.
l"';"'T '.' " ~ c r- ;parr.~l.~ 1 n/::: Jt ,.'0rt
('Ol<.;:-T ... f,,1 02H ;lIerHI: aa t. per~

CO""('T .. f:;.1 0:'1'''' ; .e: 1.: Cont. rel pon
< o~ ~ ; ser 1,11 con .n et. t J' a.",

o 1 ~ : ,er la: con o,t stat HI "'a, ~

"iii;rIMO Ir MO.' Tn TWO DISKS
: S!Lr.~T[O If 50 .'TT.'"''
; .!MOvt TM[N CPI'! I1TS
: StT TilE DISI. t'NIT ""MORy ~oc,,'

:.OW SfT U' T,U HL arc;s F'OR
: LOCATIO" or TN' '''IAI'!';'~S

;ro. nf 'fl.rCTto O.IVI

;$'1' ST ... CK 'CINT[R.
; s,r nIH, H'·,..'

SFT t'p Jl'P'lPS TO CP/~

IOO'T: LXI .5','01'1
LOA -42N
ST.. TrMP

lI~rl:

WA.,....IOOT: ",,,n .tiLl.. OF C'M I"C. Iii
fXe'r'T 1105. TMFN J\'MP TO CCP,

TOSI.SL: J.,XI H,O
IiK)V A,e
CPt 2
I.e
ANI orOM
$T" llNIT
IIK)V L,C
leVI H,O
LxI n,O.'''$r
DAD It
DA.O H
DAD"
DAD H
DAn 0
In

'h'I. C.O
JMP SETT"I(

The follo.lnq .torelie. the SO code for t.he dr 1"'.
ln the \lftlt ••",ory locatlon. ",. ar••J.nlJl. den'lt)'
if _are drl"'•• ne.d.d eh.D91 cooe r. and add
.01'. O.H· ODe pel' drl",e.

£11.98 3EC) S£TL'P; MVI .. ,OCjH ; Pi.'T ':MP TC "'1001
F"-J 320000 S" • ;o\.DJI: 'T I~.O.

'''''0 210)[0\. LXI H. "'BOOTf
EAA) 220100 SHLD 1
EA 320"00 ST' ·fA"_ 2106DC LxI H.I005 ; ,l'T JCM' TO ID05
fAAC 220600 I~LD 6 : AT ADR 0:.,6,1..U. 21800022-40 LXI lot ,'ON ; SET Dff' .. n.1 DMA Arlit.

SH1.0 4 ••
!AI~ e' In ; IItETL'.", ".OM Sf'Tl".

r"." 210000
["._ 7Cl
r"." rr02
fA.IC DO
rAID [6rO
,,,.,.),l4200

fAC2 ,t
'''C3 2'00
r,,~~ l1J3!A
rAC •••
r AC- 2.
[AeA 2
tACa 2.
fAce 1.
EACO ct

tACr oroo
rADC CH[!A

[A,OJ 3]1000
[AOtt) ... -4 ;00
fAOct 32,.r.

; ~OC"~TI..)" (.r :=,OPAQ'"
:MrML~\' SI~~ 1 .. KByT!'::.

; GG T:... "": T: Ii.

,:lISIl. rlo.I<lU'i

: S"!"Ir ;..:- :...1';T n'
: 1 ... ~,L,"I'~:' ... ~.

NOlo. ! ~ OJ' l\'"

; "rT f" tiT ~

;1o';L." 1..';

C :...r/. ... b: ~ .,

(~Sl':'-201·102" ;e:.:..~ ;p~

;:.. ... ll::::;I"" to.:.. ... I"
c., .. E,r·)COOh ST,l"JI"T 0" CP~"

CPM". ~O"'H : 3T ... RT ~f" t\

CP"'lb·1600l1
44 'NI''''lbf'' OJ SFCT Tl '-l'''~

FOI' or ,)"0'"

';;." "'i)

lj00T;..r.:

l'~,ct'r t"'e B::;':,':'; "'I'c!::~~u rl'''',:)v~ tt",1' cn,Jp

Sf"C·l')nS b;4:, E!"!" , ... 0".-':''' , h;~.T

""."'1" bT'" t"lf" bel.~..
CA:"'L I ... :T.=.:..
J"'i':: ~;,. .. :r_"

l'NIT [:;1' "~r1 :"&.;IT tlYT. f~1C OlSIl. sr:"'f:'1
The.e and ot."'.r va: JP5 if": 'hp ,:'14':- tC' (lItJ ,., .. x

r.ng. ::,o.J:'C De Cl'".• r.')fl'c to ar;;. .. ,'nl' II ran""... So

'ylt."'. at.rt their eGJ.~"lI wlt" a c. ••• iJ..:r"'ss
.no tl'ler. add to It f'H t"ll'lr ~)''-e i.OC.'-lon~.

:"/!'l bA~IC llol>-,"T/:..;I'TPI'T u"'Io.':"T: .. ~ SVSTl.· .., (D!;~'-'

T"'15 verl1.an t.')ots 1", slr.gl'" de~,a1P)

ca:'ls ".! 110 ..:1 .. uenll.y.

CONf·-;':',

Sr-,PAOM;
H::;: Lr;

cP--.,. ,;"
b ,1C:: r;I'
81 C3 rO l '

NSr(,"T~ rQI

roo:· •
OO)C ..

i)O,H ..

04JC •
DCOO! •

£"00 ..
oo~e •

"0 CO •

The Computer Journai 25

CHr~~"':v~50;"f I,",pl'T STAll_'S.

[BOt:, CD06fOC~ CON5T: CALL SDPR~M.06H : RF"" CO"S;J;.F STAT",:,.

RET ",fT·il.N fQ.OM CONST.

(Includes 12-btl A D. 12·blt 0 A. 8 digItal sense Inputs 8
digital control outputs 32-blt real-tIme clOCk two 16-bll
lrmers piUS QUICKI 0 data aCQUIsItion software)

IMl's ADALAB INTERFACE
CARD IS AVAILABLE
SEPARATELY FOR ONLY $495

• Interactive Microware's general-purpose ADALAB '. data ac
quisition and control system interfaces with virtually any lab in
strument USing a recorder or meter. Including GC and HPLC sys
tems, spectrophotometers, pH meters, process control apparatus.
thermocouples, etc.

• Lab Data Manager'" software facilitates single or multi
channel acqUisition, storage. display and chart recorder style out
put of lab instrument data. IMI QUICKI;O software operates Within
easy-to-use BASIC!

• Thousands of scientists currently use IMI software and or
ADALAB products worldwide i

·Prlce includes 48K APPLE" II~ CPU, diskdnve with controller,
12' monitor, dol matnx pnnterwllh interface,lMI ADALAB'· inter-
face card. tTraae~a'l\ 0' ADDie CC~;:: .. 'E"

DB OOH,O"h,'CPI!'I 2.2 so SYST£HS-IC.{a1..FR
Da QDH,OM.H,'S-SO A"a '

DB OCti.J'-'H, HSIZE/IO.'O',MSIZF" HOD 10 + '0'
DB 'I(Vl.O of 2/01184 ',0

CONOT: C"LL SOPRC~+ OC"i

RET

"'RITE " CHAR CTER TO THF CONSC:'F [)fV1-::F.

READ " CH'-'R~CTER fROM CONSOtF.

CONI~: CAL:" SnpIO.OM+O"H
R.ET

["DC J roo "'V: >,0 ;0 fa, • l.ng l@ .nd " fa,
[ADE 324200 sn "" : DOl'BLf
f"El OEOQ "VI e,o
f"n COl £FA CALL 5£TTI<.I(
£"f6 U,;:C MV I > , NS EC'TS ; GET I SECT0RS f'::.di cp",\ Rf.l'.n,
F"FB J lol 1:,00 ST> ,'"
[A[B oE02 "'10'1 e,2
E"ED CD2lY CALL SFTSEC
H.ro.. 2l~OD4 LXI H. C PMB ; GET STARTI ... " ArJrJOl:fSS.
F"-f) 224000 SHLD ""FAr., CD2oro C"LL SDPROM.2DH
E"p)A,l\BEB L!)" TEM P
fA.Fe 3.24,00 SH '2"
FAfF cOQar" CALL SFTi.'P ; SFT "P JPMPS.

E 1:10" C J "4f" JM' GOC PM ; GO BACK Te.. (P"I.

EBO Q CDO"f 0

E &0': CQ

[SaG CDocro
[blO -;:0

PRINT THE MFSS"'Gf H H,,:.. l'NTI1.. • Zf Q.C.

fb11 7f PMSG; Mev
" M

; CFT > CH"RACTFOl:.
f51.2 87 0 .. • . If IT'S ZF "l8',
tbl j e, .. ; Il:fT"RN.
£B14 4f MOV c.> ;OT!1PhOISF:,
Eb1'"' coo DES c,,;,,:... :-0,,"0; ; PF;,':''''T IT.

FB 1 ~ 23 INX " : INCREMF. ... T H"L.
£1;: 'i C)1lFb JM P PMSG : "NO GET ANOTHfR.

CBlOS Mf5SAGF.S

[fllC On01,4]"i02FQMSG;
£83A J lJOL)!'l Z2t:, 3
Efl4 <; OGJAJ 0,30
Ef:l4~ 4&20<;':'312f

f flt:,C co12F'0
n,':or CQ

£860 "F
fb61 CI"i

... RITf. A CWAI<.A.CTER ON LIST DEVICE.
INS£RT YOl'R RQl'TINf HFRf'

LIST: CALL SDPROM .. 12H
RFT

PRST ! xR ... A
RFT ; RFT"RN AL Y5 "'OT RE..-..OY

Pl'NCH P"PfR T"PE.

-m-
·Wl

INTERACTIVE MICROWARE, INC.
P.O. Box 771, Dept. 226
State College, PA 16801 (814) 238-8294

PUNCH:
FB62 C9 'I.FT ;RFT'!RN FROM P'.'NCH.

NORM":'LY "SED Tc REA:-J P.-.PfR T"Pf.
Editor's Page, continued from page 1

MOV L. M

800T LOAD[R

MVI H. 0
RET

; $[CTOR TR ... NSL ... T!O'" RO'}TINE fOLLO"'S
SECTRAN XCHG

0"0

class bulk mailing.
It is obvious from looking at these programs that

they were designed by a programmer who had no
idea of what goes on in the real world. There
probably are some useful programs available. but the
ones we looked at did not fit our needs at all.
Fortunately Ernie Brooner. who is writing our multi
user column. offered a data base which he wrote for
his own use. It is not exactly what we need. but Ernie
said "That's simple - I wrote it. so I'll just change a
few lines."

The difference between a program written by a
user and one written by a programmer who does not
actually use the software himself is obvious to anyone
who tries to use the program in a day-to-day basis.

It is time for the software industry to get out in
the field and spend some time with their customers to
learn what it is that people really do with computer
~ftw~. •

; S!T TO 2ND S!C'TOR
; SECTOR TO au.o
;ST.-.RT or CPM'S CCP
:DMA. LOCATION

:MUMF.R Of S!CTORS TO UA.D
;.(>\0 MUl.TIPLf S!CTOIIS

; RETURN FROM RF"DFR.

•

.,
orOOOH

!iAO OH. (HS I 1£·24) -1024
SP, I!I OH
H.2M

'"H,8IOS-1600H

'0.
",,0;1

""SOPROM.20H

BIOS

STOR"GE >\RE>\ [)ONOT CHANGE

$
128 : 01 RECTORY ACCESS BtJfrE R
Jl
16
Jl
16

•$-B EGOAT

RET

[Q'-'

FO')
to!..'
LX I
LXI
SHLD
LXI
SH1..O
MVI
ST'
CALL
JMP
F.ND

END

TE."IP: OS

; DISI(0"1"
BF.GDAT f~l-'

DIRBL'f': os
.... LVO: os
CSVO: OS
ALVl: os
CSV1: 0,5
ENODAl I:Qt1

OATSIZ I:QL'

;thlS 1 •• q',oI1Ck boot.trap tI''l.t 10.d•• t track. a
; ••ctor 1 lt wl11 be put lnto ...mory lit 0000 by the
;Sdprom l)oot.tr.p dlak relld then 1t .Hll be
; ••• cut.d lind read 1.n the r •• t of the flr.t two trllck.a

"'SIZt'
SOPROM

BIOS

FBI')] e'

E864 Ea
1':86" 0°6£

FS'" ., 2600
£869 e'
El:,PiA

EBllb •
£1:168
£bES

ECO"
FCIA
£.:: 39
EC4~ •

0000 •

EC49

OO)C •

fOOO •
[AOO •

0000 31 !l000
000 J 210200
0006 424)00
0009 210004
OOOC 224000
ooor][]J

00 11)44";00

0014 CD2oro
0017 C]OOE"
001"

26 The Compute' Journa'

The Bookshelf

'.
'ill

'II!

TTL Cookbook
Popul.r S.ms .uthor D.n L.ncaster gives you. eomplete look .t TTL logie eireuits, the

mo~t mexpensive. most widely applicable form of electronic logic. In DtTDODSense

l.ng'J.A~~, he spt"lls out just what TTL is, how it works, and how you can use it. Many

practical TTL applications are examined, including digital counters. electronic

stopwatches. digital voltmeters. and digital tachometers. By Don Lancaster. 336 page!,

5'/..8';', soft. ,I 1974 , . $11.95

SCRs and Related Thyristor Devices
A comprehensivt" gUidebook to the operational theor~' and practical applications (or

silicon controlled rectifiers, triacs, diaes, unijunction transistors. and other membf..rs of the

thyristor family. Also contains a microprote!J!Jor mini-<,ouru to help you in iDte-r-facing

thyristors with digital control circuits. If you're involved with design. innallatlon. or

maintenance of electronic power-control equipment. this is the book for you. By Clay

Laster. 136 p'ges, 8'1..11'1•. soft. :S1981... $12.95

Instrumentation: Transducers, Experimentation, and
Applications

A laboratory-oriented manual that helps provide you with an in-depth understanding of

instrumentation and measurement. By Roger W. Prewitt and Stephen W Fardo. 224

pages. B1t,xll. soft. ::£ 1979.. . $12.95

The Programmer's CP/M Handbook
An exhau!tive coverage of CPiM·80« . it! internal nructure and major componE'nts is

presented. Written for the programmer. this volume includes subroutine examples for

each of the CPiM system calls and information on ho'" to customize CP'M - complete ~.-jth

detailed source codes for all examples. A dozen utility program!! arE' shown with heavily

annotated C-Ianguage source codes An invaluable and comprehensive tool for the serious

progr.mmer. By Andy Johnson·L.U'd. 750 p.ges. 7'/..9'1<. softbound. .121.95

Interfacing to S·I00 IIEEE 6961 Microcomputers
This book is a must if you ..ant to design a custom interface between .n S·loo

microcomputer and almost any type of peripheral de-vice. Mech.nical and electrical design

is covered, .long with logical and electriul relationships, bus intereonnections and more.

By Sol Libes .od M.rk Garetz. 322 p.ges. 6'!u9'1<. softbound. $16.95

Microproce8sors for Measurement and Control
You'll learn to design meehallieaJ and pr<K:ess equipment uling microproeessor·bued

"real time" computer sy.tems. This book presents plans for prototype systems which

aUow even those unfamiliar with machine or .!lembiy langu.ge to initiate proje-cts. By
D.M. Ausl.nder .nd P. S.guel. 310 pages. 7 3/8.9 1/4. softbound. 115.99

Osborne CP/Mt!) UHr Guide ISeeond Editionl
A new revised edition which ineludes expanded sections on CP/Mc 86 and CPiMc SO. as

well u CP/M" 's rel.tlonship to assembly I.ngu.g. progr.mming. MP'M" .od CPINE'J'C
operating environments. By Thom Hog.n. 292 pages. 6 1/11:9 114, IOftbound 115.95.

Di8cover FORTH
Whether you .re a beginner .eeking informatioD on this multi-faceted programming

l.nguage or a serious progr.mmer already using FORTH. this book is • relerence that

should not be overlooked. Loug considered a computer language of building blocks.

FORTH has been optimized for .~ed aDd requires little computer support. By Thorn

Hog.o. 146 p.ges. 6'1<.9'1<. loftbound.... $16.95

68000 AIHmbly Language Procramming
Each of the 68000', in.tructionl il individu.Uy presented and fully explained in this

uaembly lanruasp tutorial. For experienced programmers. this book ia also a complete

reference to the 68000 instruction aet and programming techniques. By Lance A

Leventh.l. 614 p.ges, 6 '1..9'~. softbound. . .. $18.95

Z8OOO'! Assembly Language Programming
This book is filled with re.l-world programming examp!e!. ,ample problem!. and

troubleshooting hints th.t will guide th. re.der to mastery of thi. po...erful n.... 16·bit

"super chip" The entire Z8000C instruction set is described in det.ail. By Lance A

Leventh.l. Ad.m Osborne.•od Chuek Collins. 928 p.ges. 6"..9'1<, softbound. 11999

The 8086 Book
Aoyooe using. de.,gning. or simply interuted in .n 8086-based system wli! be delighted

by this book's scope aDd authority. As the 16-bit microprocessor gains wider inclusion In

small computers. this book becomes Invaluable as a reference tool which coven the

tlmlng, architecture lDd design of the 8086. as well as optimal programmlng techniques.

interf.cing. speei.1 fe.tures.•nd more. By Ru..ell Rector .nd Georg. Ale.y, 624 p.ges.
6 '/u9 'I, ,softbound. . 116.99.

Z8~ Assembly Language Programming
Programming elampl~, illustrate softw.re development concepts and actual assembly

language usage. More than 80 sample programming problems with solutions and a

complete ZSOC instruction set reference table. By Lanre A. Leventhal. 640 pages.

6'".9'1<. softbound. 118.95

8080A/8085 A88embly Language Programming
More qualit)· programming examples and instruction sets tban un bt> found in any

other book on the subjE'ct. Information on assemblers. program loops. codE' converSIon and

more. A must {or 8080A.'80805 programmers. By Lance A Leventhal. 448 pages. 81!IX9
1
':",

softbound. $18.95

Microproce8sor Circuits, Volume 2: I/O Interfacing &
Programmable ControUers

Ideal way to learn about cornercial and industrial applications of microproce5Sor

circuitry and gain practical. valuable, hands-on experience at the same time. Features

many easy·to-build demonstration circuits that teach you about advanced microprocessors.

microc:ontrollen. and real·world I/O lnterfadog. Perfect for technicians. h.ms, students.

.nd te.ehen. By Edw.rd M. Noll. 128 p.g••. 8'1..11. softbound 19.95

IC Timer Cookbook 12nd editionI
Learn moreys to use the Ie timer in this big Second Edition of Sam'5 best·s~ller If!

easy to Ule, practiul. and includes many new device! With ready tlTuse applicatiOn! in

circuits that really ...ork: All circuit! and rel.tionships are {ully defined and discussed {or

clarity. You'll know a lot more about a lot mort' Ies after you· ..·p finished this one By

W.lter G. Jung, 384 p.g.s. 5',..8"I.loftbound. $1795

Microprocessor-BaHd Robotics
Introduces you to robotics -a dynamiC' new field of science that uses your computing

and electronic talents IS well II 10ur m~hanica.l and el~triul knowledge. Fir't, you'lI

learn the mechanics of robot hands. arms, and legs; then, tactiJe HOSing, motloD Ind

attitude lenling, and vision systems. After tbat. you learn controlling with

microproeel80rs and BASIC progTams. and finaH)·. you learn to control the enUre robot

.ystem with voice commands! Fascinating and "ot machine specifi(By Mark J Robillard.

224 p.g.' ;''1111. softbouod. . 116.95

TV Typewritter Cookbook
Show. you bow to quickly IDd ealily project words and PlctUTe'S from I common,

microprocessor-baled sy.tem onto an ordinary TV let· You'l! be IDtrodu('ed to TVT

communication. by belt·selhn, author Don Lancut.er. who dlKUJHt baJlc TVT system

dnip.. memory lypes. interface circuitry. hard-copy output. and color gr.phies By Don

Lantalter. 256 p.g.... 5'1..8.... softbound. $1195

Microeomputer Math
A .tep-b,.-.t~ introduction to binary. O('ul. and bexidecimal DumbeTl. and arithmetic

' ..

'''t

-ill

,.,

,lIl

operations 00 all types of microcomputers. EXC~Il~Dt for serIOus BASIC begmoers u well

a. assembly·laDguag~ programmers, Treats addition and subtraetlon of binary. multiple

precision and floating' point operations. fractions and scaling, nag bits. and mor~. Many

pract,cal .umpl•• and I.llt••t•. By William Bard.n, 160 page., 5', ..B'!" .oftboundSll.95

UDderstandiDg Digital Logic Circuits
A workIng handbook for service technicians and others who need to know more about

digital elertronics in radio, television, ludio. or related areas of electronic troubleshooting

Ind repair. You're given In overview of the Inatomy of digital·logic dilgrams Ind

Introduced to the mlny tommercill Ie packages on the market. By Robert G Middleton,

392 page., 5'I,.B'" . •oftbound . SlB.95.

CMOS Cookbook
One of the best· selling technIcal books on the market. this cookbook gives you a solid

understanding of CMOS technology and its application to real-world circuitr~', Explains

how CMOS dIffers from other MaS desigD!, tow it's powered. and what Its Idvantage5

are over other con5tructlon~. The final ehapter shows you how to put all preceding

informatIOn to work constructing several large·scale. working instruments. Includes a

rr:~nj·{"atalog of more than 100 devices. with pinouts and applicatIOn notes By Don

r..anca!ter. 416 pagt's, 5~'rx8~r, softbound 113,95

CP/M Primer
Helps microcomputer veterans and no ...·icu alike fInd the answers about CP M In a

complete. one--stop lOurce-book that's a Sams bestseller~ Gives you complete CP ~

terminology, hardware and software cont"~pts. sUrtup deuils. and more for thIS popular

6OBO/60B5iZ60 opnatlng oy.tem H.lp. you begtn ua,ng and worklOg With CP M

immediately, and includes a list of compatible aoftware. too By Stephen Murtha and

Mitchell Waite 96 pages. 8 1'rxll, comb, 't;. 1980. 514.95

Soul of CP/M: UsiDg and ModifyiDg CP/M's IDterDal
Features

Teaches you how to modify BIOS. use CPlM system calls in your own progTams. and

more! Excellent for those who have read CP/M Pnmer or who otherwise understlnd

CP,tM's outer-Iayeor utilitIes. By Mitchell WaIte, Approxlmatel.v 16Qpages. B~9· l. comb

$14.95

The S-l00 and Other Micro Buses (2Dd EditioDI
Examines microcomputer bus syestems In generll and 21 of the most popular sy!llem"

in particular. !Dcluding the S-l00. Helps you expand your computer !Iystem through.

better undE'rstanding of what each bus inciudps and ho· _'IOU car. Jr.terfacf' on€' bu~ "";~h

another. B)' Elmer C. Poe and Jame. C. GoodWID, II 208 page •. 5' ..8' ...of, 19B1$99.;

SCRs and Related Thyristor Devices
A t"omprehensJvP guidebook to the operational theory and practical applications for

sl1lc0n controll€'d rpctifJHs. trIACS. dlacs. uDljunctlOn transistors. and other members of the

thyristor ramily. Also conUlns a microprocessor mini-course to help you In interfacing

thyristors with digital control circuits. If you're involved with design. installatIOn. or

maintenance of electronic power-control equipment. thiS IS the book for you. By Clay

Laster. 136 pages. 8 1/ 1 x11, softbound. . .112.95

Real Time ProgrammiDg: Neglected Topics
This book presents an original approach to the terms. skills. and standard hardware

devices needed to connect a computer to numerous peripheral devices. It distills technical

knowledge u!led by hobbyists and computer scientists alike to useable. comprehensiblf.'

methods. It explains such computer and electronics concepts as simple and hierart"hlcal

interrupts. ports. PIAs. timers, converters, tht' sampling theorem. digital filters. closed

loop control system,. multiplexing, buses. t"ommunication. and distributed computer

systems. By Caxton C. Foster, 190 pages, 6 1,.x9 1,.. softbound. _59.95

InterfaciDg & ScieDtific Data CommunicatioDs
ExperimeDts

This book introduces you to the principles Involved in transferring data uSing thE'

uynchronous aerial data-transfer te~hnIQuE' It foeuse-s on uSing the universal

asynchronous receiver/transmitter n":ARTI t"hip in order to help your understandmg of

communication ehips. Explores operation of teletype-writer interface! and ~rlal

transmission cir~uits. With experiments and cirCUit details By Peter R Rony 160 page"

51/1x8 1/1. soft. t 1979. 17.95

Active-Filter Cookbook
A practical di5cusslon of the man)' attive-filter type! and uses. written by one of Sams

most popular authors. Teaches you how to constru<"t filter! of all types. including nigh

pass. low-pass. and bandpass having Beuel. Chebyshev. or Butterworth response. Easy to

understand - no advanced math or obscure theory. Can also be used as a r~ference book

for analysis and synthesis techniques for active-filter specialists By Don Lancaster 240

pages, 5 11IX8 1'1. soft. '£1975. 114.95

Interfacing Microcomputers to the Real World
Here is a t"omplete guide for using a microcomputer to computerize thE' home. office, or

laboratory. It shows hoo;r,' to design and build the interfaces necessary to connect a

microcomputer to real·world dences. With this book. microcomputers can be programmed

to provide fut. accurate monitoring and eontrol of virtually all electronic functions - from

controUing houulights. thermostats. sensors. and switches. to operating motors,

keyboards. and displays. This book is based on both the hardware and software principles

of the zao microprocessor (found in several minicomputers. rand}' Corporation's famous

TRS-BO, and oth... I. By Murray Sarg.nt 1II and Richard Shoemlk.r, 288 pag••, 6'...9'1.,

loftbound. . Sl5.55

IC Timer Cookbook
Gives you a look at the hundred. of way. Ie timers are used in electronics. Provides a

collection of numerous recipes for using the Ie timer. including a 555 monostable circuit

with auxiliary output. a touch .witch, a programmablf' monoluble cirruit.and hundreds of

oth.... By Wllter G. Jung. 288 pag.a. 5'I..B'I,. IOft_ ©1977... _.. _." _",.,. . SlO.95

IC CODverter Cookbook
Discusses and explams data conversion fundamenUls, hardare. and peTipherals A

valuable guide to help you understand and use dll and aid eonverter appliutlOM Includes

manufacturers' data sheets. By Walter G, Jung. 576 pages, 51/1X8111. soft. 1978. 114.95

IC Op-Amp Cookbook
An informal. easy-to-read guide covering buic op-amp theory in detail. With 200

practicaL illustr~ted circuit appli~ations to reOed the most r~ent terhnolog)', JFET and

MOSFET units ar~ shown in both single and multiple formats. IntJudes manufacturers

data sheets. and lists addresses of the companies whose products are featured. By WaJt~r

G Jung_ 460 plge•. 5'1..8'1" 10ft. ©1960.... __ . Sl5.95

Regulated Power Supplies 13rd EditioDI
Newest. most comprehensive discussion you'lI find of regulated power supplies.

iJl~JudiDg their internal arehitecture aDd operation. Thoroughly explains how to use

regulation in your designs and projects .hen the DHd arises. and discusses pradical

cirruitry and components. A valuable book for any technician or eng1D~er involved In

""rvicing or d••ign. By Irving M. Gottli.b. 424 page•• 5'1..8'1,. 10ft. S 1981. $19.95

Order Date _

Print Name _

Address _

TotalPnceTitle

Shipping charges are: $100 tor the Iirst Book Total
book, and S 50 for all subsequent books

ShippingPlease allow 4 weeks for delivery.

TOTAL

Dty

Zip _

OVisa

Expi res _

State _

C MastercardCCheck

City _

Card No. _

Signature tor Charge _

The Computer Journal
PO Box 1697 Kalispell, MT 59903

28 The Computer Journal

'Ill

SYBEX Releases "Mastering CP/M."
Mastering CP/M, an advanced guide to using, altering,

and adding features to the CP/M microcomputer operating
system, has just been released by SYBEX. CP/M users and
systems programmers will better understand the
organization and operation of CP/M with this book. The
BIOS (Basic Input/Output System) and the BDOS (Basic Disk
Operating System), are described in detail, illuminating for
the reader the subtleties of the useful CP/M system. Macros
instructions, powerful tools that enable programmers to
design more efficient assembly language programs, are
introduced, and a valuable library of macros is developed.

This well-written and fascinating book takes the reader on
a step-by-step journey of discovery, leading to a more
thorough understanding of the organization and operation of
CP/M. An important set of appendices is included, making
this a comprehensive reference for CP/M users and
programmers. The book is priced at $17.95. Add $1.50 for
postage when ordering directly from SYBEX, 2344 Sixth
Street, Berkeley, CA, 94710. •

Free Thermistor Catalog
Thermometrics, Inc. of Edison, New Jersey announces the

publication of it's 52 page Thermistor Catalog number 181
D. The new catalog will prove to be of great value to anyone
who has to design, specify or use thermistors and thermistor
networks. Some of the useful features are as follows.
• A four page foldout "Thermistor Selection Guide" which
provides comparison of all the styles and sizes of
thermistors at Thermometrics, and includes physical,
thermal and electrical properties for each type.
• A review of the extensive calibration and test facilities
and services available at Thermometrics.
• A technical applications and data section which includes
definitions of thermistor terminology, the various equations
which describe the thermistor R-vs-T characteristics, a
discussion of curve tolerances and two design examples on
linearized voltage and resistance networks including output
"S" curves for different material systems.
• A product section for each of the standard thermistor
types available detailing all dimensions, R-vs-T
characteristics, thermal properties, options and ordering
information.

In addition to the new catalog there are some very useful
application notes available which deal with thermistor
theory, measurement, design techniques, stability and
theory of self heated thermistors (including their use in flow
measurement.) This information is available free of charge
to interested readers from Thermometrics, 808 US Highway
I, Edison, New Jersey, 08817, Tel. 201-287-2870. •

FORTH Tutorial at Half Price
MicroMotion announces the availability of the FORTH·79

Tutorial & Reference Manual at half price ($10.00). This
professionally written manual was the first complete
FORTH tutorial to teach the FORTH computer language.
including FORTH-79 and FIG-FORTH. It has been replaced
with their new publication, FORTH Tool8 ($20.00), which
teaches the new 1983 International Standard. For further
information contact MicroMotion, 12077 Wilshire Blvd. #506.
Los Angeles, CA, 90025, Tel. 213-821-4340. •

Interface Breadboard Package from Group
Technology

The Color Computer Expansion Connector Breadboard,
Model CC-I00, for the TRS-80 Color Computer 1 or 2 makes
it possible to connect external devices to the expansion
connector signals of the computer. Combined with a
solderless breadboard and the book TRS·SO Color Computer
IIlterfacing, With Experiments (book no. 21893), it forms the
CoCo-I00 package providing basic interfacing instructions
for any version of this versatile computer. In addition. the
CC-I00 Experiment Component Package contains the parts
necessary to do the experiments in the book.

With the CoCo-I00, the user can learn in step-by step
fashion how to access the signals available in the parallel
expansion connector of the TRS-80 Color Computer and how
to construct and use a peripheral interface adapter (PIAl.
The experiments demonstrate how to enter and retrieve
binary data and how analog-to-digital and digital-to-analog
conversion is performed both within the computer and using
external devices. With the fundamental understanding and
hands-on experience developed through the interface
package, users are well-equiped to extend their interfacing
capabilities to a variety of applications.

Readers and reviewers alike have praised Andy
Staugaard's book for its clarity and thoroughness. The
aspiring experimenter needs only a working knowledge of
Color BASIC programming and the binary number system
(reviewed in the Appendixl to embark on a delightful
journey toward proficiency in interfacing. The reader is
shown how to construct input/output (I/O) ports and to use
them to connect the computer to the mostly analog world
that lies outside.

Model CoCo-l00, Interface Breadboard Package. is priced
at $51.25, a 10% reduction from the cost of the individual
components, plus $2.50 shipping. Virginia residents add 4%
sales tax. VISA and Master Cards accepted. For purchase or
further information, contact Group Technology, Ltd., PO
Box 87, Check,VA, 24072, Tel. 703-651-3153. •

'11II

".

••

.'.

,.

••
I~

.11

